Prakticky identické postupy:

Slides:



Advertisements
Podobné prezentace
Grafové algoritmy.
Advertisements

Grafický součet úseček
NEJKRATŠÍ CESTY MEZI VŠEMI UZLY
Dostačující podmínky •Sporný cyklus –Cyklus ve sporném orientovaném grafu •Sporné kolo –Struktura sporných cyklů.
Zajímavé aplikace teorie grafů
LOGISTICKÉ SYSTÉMY 6/14.
Diskrétní matematika Opakování - příklady.
Aplikace teorie grafů Základní pojmy teorie grafů
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/ Úvod do teorie grafů.
Analytické nástroje GIS
Statické systémy.
Síťová analýza RNDr. Jiří Dvořák, CSc.
Některé pojmy teorie grafů I. Příklad: log p ABC = u 0 + u A + u B + u C + u AB + u AC A B C.
Rozcvička Urči typ funkce:.
Algoritmy zpracování textů II
ADT Strom.
FORMALIZACE PROJEKTU DO SÍŤOVÉHO GRAFU
LOGISTICKÉ SYSTÉMY 7/14.
LOGISTICKÉ SYSTÉMY 8/14.
Získávání informací Získání informací o reálném systému
SÍŤOVÁ ANALÝZA.
TI 7.1 NEJKRATŠÍ CESTY Nejkratší cesty - kap. 6. TI 7.2 Nejkratší cesty z jednoho uzlu Seznámíme se s následujícími pojmy: w-vzdálenost (vzdálenost na.
ORIENTOVANÉ GRAFY V této části se seznámíme s následujícími pojmy:
Stromy.
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
DÉLKA. Rozdělte se do skupin po čtyřech: Každá skupina dostane pracovní list s následujícími úkoly.
Další typy dopravních problémů
CW – 05 TEORIE ROZHODOVACÍCH PROCESŮ
vlastnosti lineární funkce
STROMY Datová struktura sestávající z uzlů
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/ Grafové pojmy Projekt učitelé.
VLASTNOSTI GRAFŮ Vlastnosti grafů - kap. 3.
Programovací jazyk Haskell doc. Dr. Ing. Miroslav Beneš  katedra informatiky, A-1007 
Matematické metody optimalizace Tomáš Vaníček Katedra inženýrské informatiky Stavební fakulta ČVUT Thákurova 7, Praha 6 Dejvice, b407
OBVOD TROJÚHELNÍKU.
Podobnost trojúhelníků I.
KIV/PRO Cvičení Nejkratší cesta Vstup – N měst – Mezi některými dvojicemi měst vedou obousměrné silnice, zadány délky cest Výstup – Nejkratší.
Kostra grafu Prohledávání grafu
Aktivní škola - podpora, zlepšení kvality vzdělávání a výuky na základní škole Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Barvení grafů Platónská tělesa
Práce s excelem.
Tomáš Vambera. Přístroje  Mobilní telefony  Přenosné počítače (Pda)  GPS Přístroje.
PRÁCE S EXCELEM PROJEKTOVÝ DEN - Informační technologie.
Doc. Josef Kolář (ČVUT)Prohledávání grafůGRA, LS 2010/11, Lekce 4 1 / 15Doc. Josef Kolář (ČVUT)Prohledávání stavového prostoruGRA, LS 2013/14, Lekce 11.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A8 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
Vstup: Úplný graf G=(V,E), ohodnocení hran d:E → R + Výstup: Nejkratší Hamiltonovská cesta HC v grafu G Najdi minimální kostru K grafu G Pokud K neobsahuje.
Trojúhelník Geometrie pro 3. třídu.
Jak je to s izomorfismem
Neznámá ze vzorce. Vypočtěte výšku c kvádru o objemu V = 300 cm 3, když a = 3 cm, b = 2 cm a = 5 cm, b = 10 cm a = 4 cm, b = 5 cm a = 6 cm, b = 2 cm délky.
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/ Domečkologie Projekt učitelé.
Pythagorova věta Mgr. Petra Toboříková Vyšší odborná škola zdravotnická a Střední zdravotnická škola, Hradec Králové, Komenského 234.
TI 3.1 UPOZORNĚNÍ Reprezentace grafů, odst. 4.1 dne (za týden) bude X36TIN dvakrát dne (za 5 týdnů) bude X36OSY dvakrát skripta.
NEJKRATŠÍ CESTY Nejkratší cesty - kap. 6.
Rozmístění středisek obsluhy v dopravní síti Předmět: Teorie dopravy - cvičení Ing. František Lachnit, Ph.D.
Grafický součet úseček
STROMY A KOSTRY Stromy a kostry - odst. 3.2.
Znázornění dopravní sítě grafem a kostra grafu Předmět: Teorie dopravy - cvičení Ing. František Lachnit, Ph.D.
MODELY TEORIE GRAFŮ.
Maximální propustnost rovinné dopravní sítě
HODNOCENÍ DOPRAVNÍ SÍTĚ
Fylogenetická evoluční analýza
Běžné reprezentace grafu
Programovací jazyk Haskell
Výpočetní složitost algoritmů
Domácí úkol Pro molekulu morfinu (vzorec si najděte na Internetu) vytvořte: FSR (kořen = atom N) SAR SSSR Popište složitost jednotlivých kroků algoritmu.
Prakticky identické postupy:
Dynamické programování Úloha batohu neomezená
Prakticky identické postupy:
ALG 10 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz
Transkript prezentace:

Prakticky identické postupy: Předpokládají Topologické uspořádání grafu! Počet všech cest v acyklickém grafu z uzlu A do uzlu B Počet úplně všech cest v acyklickém grafu Nejkratší cesta v acyklickém grafu z uzlu A do uzlu B Nejdelší cesta v acyklickém grafu z uzlu A do uzlu B Nejdelší cesta vůbec v acyklickém grafu Nejkratší cesta ve váženém acyklickém grafu z uzlu A do uzlu B Nejdelší cesta ve váženém acyklickém grafu z uzlu A do uzlu B Nejdelší cesta vůbec ve váženém acyklickém grafu

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 Init: Všechny počty 0, pouze ve startovním uzlu 1.

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 1 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 1 2 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 1 2 3 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 1 2 3 1 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Počet 1 1 2 3 1 4 4 cesty z uzlu 2 do uzlu 8 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet Init: 0 ve všech uzlech

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet 1 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet 1 1 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet 1 1 4 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet 1 1 4 7 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet 1 1 4 7 4 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Počet všech cest v acyklickém grafu 1 2 3 4 5 6 7 8 Počet 1 1 4 7 4 13 Počet cest = 0+0+1+1+4+7+4+13 = 30 Počet[X] = Suma (počet[Y], pro všechy hrany (Y, X)) + počet hran (Y, X) = = Suma (počet[Y]+1, pro všechy hrany (Y, X))

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka        Před - - - - - - - - Init: Všechny délky , všechny předchůdce null Ve startovním uzlu délka 0

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka        Před - - - - - - - - Délka[X] = Minimum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka   1     Před - - - 2 - - - - Délka[X] = Minimum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka   1 1    Před - - - 2 2 - - - Délka[X] = Minimum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka   1 1 2   Před - - - 2 2 4 - - Délka[X] = Minimum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka   1 1 2 2  Před - - - 2 2 4 4 - Délka[X] = Minimum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka   1 1 2 2 3 Před - - - 2 2 4 4 4 Délka[X] = Minimum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8   1 1 2 2 3 Před - - - 2 2 4 4 4

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - - - - - - Před - - - - - - - - Init: Všechny délky ─, všechny předchůdce null Ve startovním uzlu délka 0

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - - - - - - Před - - - - - - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - 1 - - - - Před - - - 2 - - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - 1 2 - - - Před - - - 2 4 - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - 1 2 3 - - Před - - - 2 4 5 - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - 1 2 3 2 - Před - - - 2 4 5 4 - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - 1 2 3 2 4 Před - - - 2 4 5 4 6 Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta v acyklickém grafu z uzlu 2 do uzlu 8 1 2 3 4 5 6 7 8 Délka - - 1 2 3 2 4 Před - - - 2 4 5 4 6

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka Před - - - - - - - - Init: Všechny délky 0, všechny předchůdce null

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka Před - - - - - - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 Před - - 1 - - - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 1 Před - - 1 2 - - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 1 2 Před - - 1 2 4 - - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 1 2 3 Před - - 1 2 4 5 - - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 1 2 3 2 Před - - 1 2 4 5 3 - Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 1 2 3 2 4 Před - - 1 2 4 5 3 6 Délka[X] = Maximum (Délka[Y]+1, pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta v acyklickém grafu 1 2 3 4 5 6 7 8 Délka 1 1 2 3 2 4 Před - - 1 2 4 5 3 6

Nejkratší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka        Před - - - - - - - - Init: Všechny délky , všechny předchůdce null Ve startovním uzlu délka 0

Nejkratší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka        Před - - - - - - - - Délka[X] = Minimum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka   10     Před - - - 2 - - - - Délka[X] = Minimum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta ve váženém acyklickém grafu z uzlu 1 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka   10 7    Před - - - 2 2 - - - Délka[X] = Minimum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta ve váženém acyklickém grafu z uzlu 1 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka   10 7 15   Před - - - 2 2 5 - - Délka[X] = Minimum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka   10 7 15 20  Před - - - 2 2 5 4 - Délka[X] = Minimum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka   10 7 15 20 21 Před - - - 2 2 5 4 6 Délka[X] = Minimum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž minimum nastalo a nebylo 

Nejkratší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka   10 7 15 20 21 Před - - - 2 2 5 4 6

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka - - - - - - - Před - - - - - - - - Init: Všechny délky ─, všechny předchůdce null Ve startovním uzlu délka 0

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - - - - - - Před - - - - - - - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - 10 - - - - Před - - - 2 - - - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - 10 15 - - - Před - - - 2 4 - - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - 10 15 23 - - Před - - - 2 4 5 - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - 10 15 23 20 - Před - - - 2 4 5 4 - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - 10 15 23 20 30 Před - - - 2 4 5 4 6 Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo a nebylo ─

Nejdelší cesta ve váženém acyklickém grafu z uzlu 2 do uzlu 8 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka - - 10 15 23 20 30 Před - - - 2 4 5 4 6

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka - - - - - - Před - - - - - - - - Init: Všechny délky ─, všechny předchůdce null Ve všech kořenech délka 0

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka 5 - - - - - Před - - 1 - - - - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka 5 10 - - - - Před - - 1 2 - - - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka 5 10 15 - - - Před - - 1 2 4 - - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka 5 10 15 23 - - Před - - 1 2 4 5 - - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka 5 10 15 23 20 - Před - - 1 2 4 5 4 - Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 5 9 6 1 2 3 4 5 5 8 6 7 10 8 Délka 5 10 15 23 20 30 Před - - 1 2 4 5 4 6 Délka[X] = Maximum (Délka[Y]+váha(Y, X), pro všechy hrany (Y, X)) Před[X] = uzel Y, v němž maximum nastalo

Nejdelší cesta ve váženém acyklickém grafu 7 9 2 10 10 6 5 9 1 2 3 4 5 5 8 6 7 10 8 Délka 5 10 15 23 20 30 Před - - 1 2 4 5 4 6