Konstrukce trojúhelníku

Slides:



Advertisements
Podobné prezentace
Konstrukce trojúhelníku 5. ročník
Advertisements

Konstrukce lichoběžníku
Konstrukce trojúhelníku
Konstrukce trojúhelníků
Užití Thaletovy kružnice
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku Podle věty sss b a c 1. Přiřaď názvy stran na správné místo. C A B Kantor nejdříve nechá žáky vyřešit tuto otázku. A B.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce rovnoběžníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce lichoběžníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Užití Thaletovy kružnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
11.1 Kružnice trojúhelníku opsaná
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Užití Thaletovy kružnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Známe-li délku úhlopříčky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku Známe-li všechny 3 jeho strany. Konstrukce podle věty sss (strana, strana, strana)
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Množina bodů dané vlastnosti
Obdélník (známe-li délky jeho stran)
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Konstrukce rovnoběžníku
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Množina bodů dané vlastnosti
23 SHODNOST TROJÚHELNÍKŮ.
Konstrukce trojúhelníku
Čtverec (známe-li délku jeho strany)
Konstrukce trojúhelníku
8.1 Konstrukce trojúhelníku typu SSS
Konstrukce rovnoběžníku
Konstrukce kosočtverce
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Transkript prezentace:

Konstrukce trojúhelníku Známe-li všechny 3 jeho strany. Konstrukce podle věty sss (strana, strana, strana)

Trojúhelník a jeho vlastnosti Zopakujme si základní vlastnosti, které nám často pomohou při pozdějších konstrukcích. Trojúhelník je rovinný geometrický útvar sestávající ze tří stran, tří vrcholů a tří vnitřních úhlů.

Trojúhelník - označování Pozor při značení vrcholů a stran trojúhelníku. Strana a proti vrcholu A, strana b proti vrcholu B, strana c proti vrcholu C. Popis vrcholů začínáme obvykle v levém dolním rohu, ale vždy popisujeme vrcholy ve směru proti pohybu hodinových ručiček.

Trojúhelník – součet vnitřních úhlů Součet vnitřních úhlů trojúhelníku je vždy 180°. 37° 73° 70° ____ 180°

Konstrukce trojúhelníku Z jakých částí se skládá naše činnost prováděná před, během a po konstrukci? 1. Je dobré zjistit, pokud to jde už ze zadání konstrukce, zda trojúhelník lze vůbec sestrojit, abychom zbytečně neztráceli čas. Jak? Např. pomocí trojúhelníkové nerovnosti, velikosti úhlů apod. 2. Načrtnout obrázek, v němž si vyznačíme zadané údaje. Udělat si náčrt konstruované situace. 3. Rozebrat postup, podle kterého budeme trojúhelník rýsovat. To znamená, určit si, které znalosti nám při konstrukci trojúhelníku pomohou a jak. Např. vlastnosti trojúhelníku a jiných známých geometrických útvarů nebo množiny bodů dané vlastnosti. 4. Zapsat postup konstrukce, stanovený na základě provedeného rozboru. 5. Podle zapsaného postupu uskutečnit konstrukci a narýsovat zadaný trojúhelník. 6. Zapsat počet všech možných řešení dané zadané úlohy.

A nyní již přikročíme ke konstrukci. Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. První krok konstrukce, tj. určení, zda lze trojúhelník o zadaných stranách vůbec sestrojit, si výjimečně necháme až na samotný závěr, až jej na základě provedených konstrukcí budeme schopni daleko lépe a rychleji pochopit. Náčrt: b=7 cm a=5 cm c=8 cm

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. K tomu, abychom sestrojili trojúhelník, potřebuje mít zadány 3 údaje. Tak, jak je tomu v našem případě, kdy známe tři strany trojúhelníku. Tyto tři zadané údaje se pak zpravidla využívají při prvních třech krocích postupu konstrukce. Čím při rýsování začneme? Při konstrukcích trojúhelníků začínáme většinou (je-li zadána) stranou, a to dolní, vodorovně umístěnou stranou. b=7 cm a=5 cm c=8 cm

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Dále budeme hledat bod C. Co o něm víme? Víme, že jeho vzdálenost od bodu B je 5 cm (a=5 cm). Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech bodů, jejichž vzdálenost od bodu B je 5 cm? Je to kružnice k se středem v bodě B a poloměrem o velikosti a, tj. 5 cm. C3 C4 C5 C2 k C1 C6 C7 C8 a=5 cm C9 C10 c=8 cm

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Co ještě víme o bodu C? Jakou druhou podmínku (kromě vzdálenosti 5 cm od bodu B) musí ještě splňovat? Víme, že jeho vzdálenost od bodu A je 7 cm (b=7 cm). Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech bodů, jejichž vzdálenost od bodu A je 7 cm? Je to kružnice l se středem v bodě A a poloměrem o velikosti b, tj. 7 cm. C2 k C1 C3 b=7 cm a=5 cm C4 C5 c=8 cm l

Rozbor konstrukce Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Př.: Sestrojte trojúhelník ABC, ve kterém a=5 cm, b=7 cm, c=8 cm. Kde se tedy nachází vrchol C trojúhelníku? Leží v průsečíku kružnic k a l, tzn.množiny všech bodů, které mají od vrcholu A vzdálenost danou stranou b, tj. 7 cm (kružnice l), a množiny bodů, které mají od bodu B vzdálenost danou stranou a, tj. 5 cm (kružnice k). Jako 2. a 3. krok konstrukce tedy narýsujeme výše uváděné kružnice. k C Zapisujeme: C  k  l b=7 cm a=5 cm c=8 cm l

Postup a konstrukce: 1. AB; AB=c=8 cm 4. C; C  k  l 2. k; k(B; a=5 cm) 5. Trojúhelník ABC 3. l; l(A; b=7 cm) l k C p A B

Výsledný trojúhelník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem C) Konstrukci proměříme, zda odpovídá zadání, a trojúhelník vytáhneme silněji. A takto vypadá celá konstrukce.

Pár příkladů k procvičení – příklad č. 1 Sestrojte trojúhelník ABC, jestliže: c=3 cm, b=6,5 cm, a=85 mm (Pozor na jednotky!)

Pár příkladů k procvičení – příklad č. 2 Sestrojte trojúhelník ABC, jestliže: a=5 cm, b=5 cm, c=7 cm

Pár příkladů k procvičení – příklad č. 3 Sestrojte trojúhelník OPQ, jestliže: o=4 cm, p=9 cm, q=7 cm

Konstrukce trojúhelníku podle věty sss. Otevřete si na závěr ještě následující odkaz. Můžete myší měnit polohu bodů A, B a poloměry kružnic na uvedené konstrukci. Zkoumejte, zda při všech možných velikostech stran lze trojúhelník sestrojit. http://www.horackova.cz/cabri/vyklad/631.htm

Konstrukce trojúhelníku podle věty sss. Tak co jste zjistili? Že ne vždy lze trojúhelník sestrojit? Pak je váš závěr správný. O tom, zda trojúhelník zadaný všemi jeho stranami sestrojit jde nebo ne, rozhoduje tzv. trojúhelníková nerovnost. Tu si ale necháme na příště.

Přeji přesnou ruku při rýsování!