Lineární funkce - příklady

Slides:



Advertisements
Podobné prezentace
Funkce, funkční závislosti Lineární funkce. Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních.
Advertisements

URČENÍ ROVNICE LINEÁRNÍ FUNKCE Název školy: Základní škola Karla Klíče Hostinné Autor: Mgr. Hana Kuříková Název: VY_32_INOVACE_02_B_9_Určení rovnice lineární.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Definice: Funkce f na množině D(f)  R je předpis, který každému číslu z množiny D(f) přiřazuje právě jedno reálné číslo. Jinak: Nechť A, B jsou neprázdné.
Funkce Konstantní a Lineární
MATEMATIKA Funkce.
ANALYTICKÁ GEOMETRIE V ROVINĚ
CZECH SALES ACADEMY Hradec Králové – VOŠ a SOŠ s.r.o.
NÁZEV ŠKOLY: Základní škola Hostouň, okres Domažlice,
Matematika 3 – Statistika Kapitola 4: Diskrétní náhodná veličina
Výukový materiál zpracovaný v rámci projektu EU peníze školám
ČÍSLO PROJEKTU CZ.1.07/1.5.00/ ČÍSLO MATERIÁLU 1 – Množiny – teorie
Lineární rovnice a nerovnice I.
Soustava dvou lineárních rovnic se dvěma neznámými
Grafické řešení lineárních rovnic
Lineární rovnice Ekvivalentní úpravy
Kvadratické nerovnice
8.1 Aritmetické vektory.
FUNKCE. Závislost délky vegetační sezóny na nadmořské výšce
8.1.2 Podprostory.
Matematika Parametrické vyjádření přímky
Základní jednorozměrné geometrické útvary
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Matematika Směrnicový tvar přímky
Soustavy dvou lineárních rovnic se dvěma neznámými
Funkce Funkce (píšeme f (x) ) je každé zobrazení množiny A do množiny R, kde A je libovolná podmnožina množiny R. Zobrazované množině A říkáme definiční.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Vzájemná poloha hyperboly a přímky
CW-057 LOGISTIKA 34. PŘEDNÁŠKA Lineární programování – 4/G Leden 2017
MATEMATIKA Soustavy dvou lineárních rovnic o dvou neznámých.
Soustava dvou lineárních rovnic se dvěma neznámými
3. Diferenciální počet funkcí reálné proměnné
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/ – Investice do vzdělání nesou.
Kvadratické nerovnice
Lineární funkce Funkce daná rovnicí , kde . Definiční obor:
FUNKCE – vlastnosti Co znamená rostoucí funkce?
Rovnice a graf přímé úměrnosti.
Lineární funkce Zdeňka Hudcová
Lineární funkce.
LINEÁRNÍ FUNKCE Název školy: Základní škola Karla Klíče Hostinné
Lineární Přímá úměra Konstantní
DIGITÁLNÍ UČEBNÍ MATERIÁL
Lineární funkce a její vlastnosti 2
Rovnice základní pojmy.
Rovnice s absolutními hodnotami
VY_32_INOVACE_FCE1_06 Funkce 1 Lineární funkce.
FUNKCE Hejný [str. 240] ontogeneze funkčního myšlení
Graf nepřímé úměrnosti
Dvourozměrné geometrické útvary
Teorie chyb a vyrovnávací počet 1
Název školy:  ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor:
AUTOR: Mgr. Marcela Šašková NÁZEV: VY_32_INOVACE_4B_17
Příklad postupu operačního výzkumu
* Funkce Matematika – 9. ročník *.
Výuka matematiky v 21. století na středních školách technického směru
KOMBINACE BEZ OPAKOVÁNÍ
7.2 Lineární funkce Mgr. Petra Toboříková
Ing. Gabriela Bendová Karpytová
Dvourozměrné geometrické útvary
Kvadratická funkce Funkce daná rovnicí , kde . Definiční obor:
Lineární funkce a její vlastnosti
Základy infinitezimálního počtu
Konstrukce trojúhelníku - Ssu
Výuka matematiky v 21. století na středních školách technického směru
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Opakování na 3. písemnou práci
Grafy kvadratických funkcí
Teorie chyb a vyrovnávací počet 2
Konstrukce trojúhelníku
Transkript prezentace:

Lineární funkce - příklady

Opakování: Funkce - definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. Funkci značíme obvykle písmenem f, ale nic nebrání tomu, abychom použili i jiná písmena, např. g, h, … a obvykle zapisujeme ve tvaru: y = f(x), např. y = 2x+1 nebo ve tvaru: f: y = 2x + 1 kde proměnná x je argument funkce.

Opakování: zápis funkce f: y = 2x + 1 kde proměnná x je argument funkce, nebo-li nezávisle proměnná. Nezávislost je dána tím, že její hodnotu můžeme libovolně měnit, ovšem jen v rámci definované množiny, definičního oboru. Množina všech přípustných hodnot argumentu x, tedy všechny hodnoty, kterých může proměnná x pro danou funkci nabývat, se nazývá definiční obor. Značí se: D(f)

Opakování: obor hodnot Ke všem přípustným hodnotám argumentu x, přísluší právě jedna funkční hodnota. Ty všechny dohromady tvoří obor hodnot (obor funkčních hodnot). Funkční hodnota neboli závisle proměnná je číslo, které funkce přiřadí konkrétnímu argumentu x. Jinak řečeno: výstupní hodnota funkce. Obvykle ji značíme y nebo f(x). Hodnota závisle proměnné je pro danou funkci jednoznačně určena hodnotou argumentu x - proto „závisle“ proměnná. Obor hodnot je množina všech reálných čísel, které dostaneme jako výstupní hodnotu funkce f, jestliže za x dosadíme všechny přípustné hodnoty z D(f). Značí se: H(f)

Opakování: zadání, zápis funkce 2) Tabulkou 1) Předpisem (vzorcem, rovnicí) x -2 -1 1 2 y -3 3 5 f: y = 2x + 1 3) Grafem

Opakování: Lineární funkce Lineární funkce je funkce daná rovnicí y = ax + b kde a, b jsou libovolná reálná čísla a definičním oborem množina všech reálných čísel. Poznámka: Je-li definičním oborem podmnožina (část) množiny všech reálných čísel, hovoříme o části lineární funkce. y = - 5x + 3/4 y = - 3x + 1,5 y = 0,5x - 3 y = - 1/2x – 0,75 y = 2x + 1

Opakování: Graf lineární funkce Sestrojte graf funkce f: y=2x-1, pro xR. x -2 -1 1 2 y -5 -3 3 Grafem funkce je přímka. Slovo přímka pochází z latinského „linea“, což označuje čáru nebo přímku. Funkci, jejímž grafem je přímka říkáme lineární funkce.

Opakování: Vlastnosti lineárních funkcí Sestrojte v téže soustavě souřadnic grafy funkcí: x 2 4 y 1 x 2 4 y -1 Jsou-li dvě lineární rovnice určeny rovnicemi y=a1x+b1; y=a2x+b2 a jestliže a1=a2, pak grafy těchto funkcí jsou navzájem rovnoběžné přímky. x 2 4 y -2 -3

Opakování: Vlastnosti lineárních funkcí Budeme měnit a tedy šetřit, jak graf ovlivňuje koeficient b (koeficient a=1). b=2: y=x+2 x 1 y 2 3 b=1: y=x+1 x 1 y 2 b=0: y=x x 1 y b=-1: y=x-1 x 1 y -1 Koeficient b určuje posunutí grafu ve směru osy y. Udává y-ovou souřadnici průsečíku s osou y. b=-2: y=x-2 x 1 y -2 -1

Opakování: Vlastnosti lineárních funkcí Budeme měnit a tedy šetřit, jak graf ovlivňuje koeficient a (koeficient b=1). a=2: y=2x+1 x 1 y 3 a=1: y=x+1 x 1 y 2 a>1 funkce rostoucí a=0: y=1 x 1 y a=-1: y=-x+1 x 1 y Funkce f je rostoucí, právě když pro každé dvě hodnoty x1, x2 jejího definičního oboru D platí: Je-li x1<x2, pak f(x1)<f(x2). a=-2: y=-2x+1 x 1 y -1

Opakování: Vlastnosti lineárních funkcí Budeme měnit a tedy šetřit, jak graf ovlivňuje koeficient a (koeficient b=1). a=2: y=2x+1 x 1 y 3 a=1: y=x+1 x 1 y 2 a<1 funkce klesající a=0: y=1 x 1 y a=-1: y=-x+1 x 1 y Funkce f je klesající, právě když pro každé dvě hodnoty x1, x2 jejího definičního oboru D platí: Je-li x1<x2, pak f(x1)>f(x2). a=-2: y=-2x+1 x 1 y -1

Opakování: Vlastnosti lineárních funkcí Budeme měnit a tedy šetřit, jak graf ovlivňuje koeficient a (koeficient b=1). a=2: y=2x+1 x 1 y 3 a=0 funkce konstantní a=1: y=x+1 x 1 y 2 a=0: y=1 x 1 y a=-1: y=-x+1 x 1 y Zvláštní případ lineární funkce y=b se nazývá konstantní funkce. Grafem konstantní funkce je přímka rovnoběžná s osou x. a=-2: y=-2x+1 x 1 y -1

Příklady 1) [1; -1] 2) [2; 4] 3) [3; -7] -1=-3.1+2 -1=-1 Je dána funkce f: y=-3x+2 ; x -3;3). Rozhodněte, která z následujících dvojic [x; y] patří funkci f. 1) [1; -1] … pokud daná uspořádaná dvojice patří funkci f, musí po dosazení za souřadnice x a y do její rovnice nastat rovnost. A samozřejmě x-ová souřadnice musí patřit do definičního oboru funkce. -1=-3.1+2 -1=-1 … uspořádaná dvojice [1; -1] funkci patří. 2) [2; 4] 4=-3.2+2 4-4 … uspořádaná dvojice [2; 4] funkci nepatří. 3) [3; -7] … x-ová souřadnice nepatří do definičního oboru! … uspořádaná dvojice [3; -7] funkci nepatří.

Příklady [0; 1] [0; -1] [3/2; -2] [0,25; -1/2] [-1/4; -1,5] Je dána funkce f: y=2x-1 ; x R. Rozhodněte, která z následujících dvojic [x; y] patří funkci f. [0; 1] [0; -1] [3/2; -2] [0,25; -1/2] [-1/4; -1,5]

Příklady [0; 1] Ne [0; -1] Ano [3/2; -2] Ne [0,25; -1/2] Ano Je dána funkce f: y=2x-1; x R. Rozhodněte, která z následujících dvojic [x; y] patří funkci f. [0; 1] Ne [0; -1] Ano [3/2; -2] Ne [0,25; -1/2] Ano [-1/4; -1,5] Ano

Příklady [-3; 2,5] [0; -0,5] [-9; 6,5] [3; -1,5] [6; -3,5] Je dána funkce f: y=-2/3x+0,5 ; x -3; 6). Rozhodněte, která z následujících dvojic [x; y] patří funkci f. [-3; 2,5] [0; -0,5] [-9; 6,5] [3; -1,5] [6; -3,5]

Příklady [-3; 2,5] Ano [0; -0,5] Ne [-9; 6,5] Ne [3; -1,5] Ano Je dána funkce f: y=-2/3x+0,5 ; x -3; 6). Rozhodněte, která z následujících dvojic [x; y] patří funkci f. [-3; 2,5] Ano [0; -0,5] Ne [-9; 6,5] Ne [3; -1,5] Ano [6; -3,5] Ne

Příklady Vypočítejte souřadnice průsečíků grafu funkce y = 4x - 3 s osami souřadnic.

Příklady [0; -3] [0; -3] [3/4; 0] Vypočítejte souřadnice průsečíků grafu funkce y = 4x - 3 s osami souřadnic. Průsečík s osou y má souřadnice: [0; y] [0; -3] Dosazením do rovnice dostaneme: y=-3 Jinak také na základě znalostí vlastností lineárních funkcí a průběhu jejich grafů víme, že koeficient b v rovnici lineární funkce určuje průsečík s osou y, přesněji řečeno jeho y-ovou souřadnici, přičemž x-ová je samozřejmě nulová. Z toho tedy bez jakéhokoliv výpočtu také vyplývá, že souřadnice průsečíku s osou x jsou: [0; -3] Obecně tedy platí, že průsečík s osou y má vždy souřadnice [0; b]. Průsečík s osou y má souřadnice: [x, 0] 4x=3 Dosazením do rovnice dostaneme: 0=4x-3 x=3/4 [3/4; 0]

Příklady Jak se nazývají funkce f: y = 3 a g: y = -2x ? Rozhodněte, zda jsou rostoucí nebo klesající, a zdůvodněte.

Příklady Jak se nazývají funkce f: y = 3 a g: y = -2x ? Rozhodněte, zda jsou rostoucí nebo klesající a zdůvodněte. f: y = 3 a=0  funkce konstantní

Příklady Jak se nazývají funkce f: y = 3 a g: y = -2x ? Rozhodněte, zda jsou rostoucí nebo klesající, a zdůvodněte. f: y = -2x a<0  funkce klesající

Příklady Jsou dány tři lineární funkce: f: y = 2x - 3, g: y = 2x + 5, h: y = 7x + 5. Jakou společnou vlastnost mají grafy funkcí f a g? Jakou společnou vlastnost mají grafy funkcí g a h?

Příklady Jsou dány tři lineární funkce: f: y=2x-3, g: y=2x+5, h: y=7x+5. Jakou společnou vlastnost mají grafy funkcí f a g? Jakou společnou vlastnost mají grafy funkcí g a h? Lineární funkce f a g mají stejný kladný koeficient a, jsou tedy rostoucí pod stejným sklonem (úhlem). Liší se jen koeficientem b, tedy jejich grafy jsou rovnoběžné přímky. Lineární funkce g a h mají stejný koeficient b, jejich grafy tedy mají společný průsečík s osou y … [0; 5].

Příklady Napište rovnici lineární funkce, jejíž graf prochází body: A[0,2] a B[2,3].

Příklady Napište rovnici lineární funkce, jejíž graf prochází body: A[0,2] a B[2,3]. Souřadnice bodů dosadíme do obecné rovnice lineární funkce: y = ax + b Dosazením vypočítaných koeficientů a a b do obecné rovnice lineární funkce dostaneme námi hledanou rovnici funkce procházející zadanými body. Dostaneme tak soustavu dvou lineárních rovnic o dvou neznámých: koeficientech lineární funkce a a b. 2 = a.0 + b 3 = a.2 + b 2 = b 3 = 2a + b  3 = 2a + 2 3 - 2 = 2a 1 = 2a a = 0,5 y = 0,5x + 2

Příklady Ze sudu, v němž je 150 litrů vody, vyteče každou minutu 30 litrů. Zapište rovnici funkce, která určuje objem vody v sudu v závislosti na době vypouštění. Za jak dlouho bude v sudu 20 litrů vody? Řešte početně i graficky.

Čas, počet minut vytékání. Příklady: Ze sudu, v němž je 150 litrů vody, vyteče každou minutu 30 litrů. Zapište rovnici funkce, která určuje objem vody v sudu v závislosti na době vypouštění. Za jak dlouho bude v sudu 20 litrů vody? Řešte početně i graficky. y = 150 – 30.x Čas, počet minut vytékání. 20 = 150 – 30.x Množství vody v sudu. 30.x = 150 – 20 30.x = 130 x = 130 : 30 x = 13/3 min 20 litrů bude v sudu za 4 minuty a 20 sekund.

Příklady Ze sudu, v němž je 150 litrů vody, vyteče každou minutu 30 litrů. Zapište rovnici funkce, která určuje objem vody v sudu v závislosti na době vypouštění. Za jak dlouho bude v sudu 20 litrů vody? Řešte početně i graficky. x 1 2 3 4 5 y 150 120 90 60 30 x = 13/3 min