NÁZEV ŠKOLY: Základní škola Hostouň, okres Domažlice, příspěvková organizace NÁZEV PROJEKTU: Moderní škola REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/1.4.00/21.2880 ŠABLONA: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT NÁZEV A ČÍSLO MATERIÁLU: VY_32_INOVACE_16_S11-M-9 VYTVOŘENO: Duben 2013 AUTOR: Zdeňka Špinlerová VZDĚLÁVACÍ OBLAST: Matematika a její aplikace VZDĚLÁVACÍ OBOR: SADA: Matematika pro 9. ročník NÁZEV VZDĚLÁVACÍHO MATERIÁLU: Koule
ANOTACE: Materiál slouží k seznámení s koulí jako prostorovým tělesem a výpočtem jejího objemu a povrchu. OČEKÁVANÝ VÝSTUP: Žák se pozná kouli, a umí vypočítat její objem a povrch. ROČNÍK: 9. DRUH UČEBNÍHO MATERIÁLU: Prezentace STUPEŇ A TYP VZDĚLÁVÁNÍ: Základní vzdělávání – druhý stupeň POMŮCKY: Učebnice - kalkulačka CÍL – INOVACE: Podporuje aktivní výklad i opakování učiva s využitím interaktivní tabule METODICKÉ POKYNY: Žáci doplňují myšlenkovou mapu pomocí pera
MATEMATIKA 9. ročník GEOMETRIE
KOULE GEOMETRIE
Koule je velmi symetrická: je prostorové těleso tvořené množinou všech bodů prostoru, jejichž vzdálenost od zadaného bodu (středu) je nejvýše rovna zadanému poloměru. Koule je velmi symetrická: středově (podle středu), osově podle libovolné přímky (roviny) procházející středem.
KOULE Slunce Která tělesa mají tvar koule? je těleso téměř ideálního kulového tvaru, jaký kdy byl doposud změřen. Kdybychom jeho průměr zmenšili na velikost plážového míče, pak bude mít tvar koule, jejíž největší a nejmenší průměr se bude lišit méně, než je tloušťka lidského vlasu.
KOULE Další příklady těles tvaru koule.
POVRCH KOULE Koule je rotační těleso, které může vzniknout otáčením kruhu podle osy. Jak vypočítáme povrch koule? S = 4.π.r2 Jen připomeňme: d = 2.r
POVRCH KOULE PŘÍKLAD: Výpočet: Zásobník na vodu má tvar koule s poloměrem 3 m. Jeho povrch bude opatřen novým nátěrem. Kolik čtverečných metrů bude potřeba natřít? Výpočet: Kontrola výpočtu: Koule: r = 3 m S = ? m2 --------------------- S = 4.π.r2 S = 4 . 3,14 . 32 S = 4 . 3,14 . 9 S = 113 m2 Bude potřeba natřít asi 113 m2 plochy.
POVRCH KOULE GANYMED - největší měsíc sluneční soustavy MĚSÍC - přirozená družice Země Poloměr 2 631 km Poloměr 1 738 km O kolik čtverečných kilometrů je větší povrch Ganymedu než povrch Měsíce? Ganymed má povrch o 49 003 054 km2 větší povrch než Měsíc. (Ganymed = 86 942 342 km2 , Měsíc = 37 939 288 km2) Klikni a získáš výsledek.
Síť koule se nedá v rovině sestrojit. S problémem zobrazení sítě koule se potýkají kartografové. Na námořních a leteckých navigačních mapách se používá Mercatorovo zobrazení světa. Základem zobrazení je promítnutí na válec, neboť plavba pod nějakým úhlem se do mapy promítne jako přímka.
Další příklady, jak může vypadat zobrazení zeměkoule do roviny SÍŤ KOULE Další příklady, jak může vypadat zobrazení zeměkoule do roviny
OBJEM KOULE V = 𝟒 𝟑 .π.r3 Jak vypočítáme objem koule? Mezi plochami uzavírajícími daný objem má kulová plocha nejmenší obsah Naopak, mezi plochami s daným obsahem uzavírá kulová plocha největší objem. Proto se koule často vyskytuje v přírodě, např. ve formě kapek a bublin.
OBJEM KOULE PŘÍKLAD: Výpočet: Vodojem tvaru koule o poloměru r = 1,5 m je naplněn do tří čtvrtin. Kolik litrů vody obsahuje? Výpočet: Kontrola výpočtu: Koule: r = 1,5 m voda V1 = ? m3 V = ? m3 --------------------- V= 𝟒 𝟑 πr3 V= 𝟒 𝟑 . 3,14. 1,53 V = 14,13 m3 V1 = 𝟑 𝟒 .V V1 = 3 4 .14,13 V1 = 10,6 m3 V1 = 10 600 l Ve vodojemu je asi 10 600 l vody.
OBJEM KOULE PŘÍKLAD: Vypočítej objem koule znáš-li její povrch S= 1000 cm2 Výpočet: Kontrola výpočtu: Koule: S = 1000 cm2 V = ? cm3 --------------------- S= 4πr2 1000 = 4. 3,14.r2 r2 = 1000 4 . 3,14 r2 = 80 r = 80 r = 8,9 cm V= 𝟒 𝟑 πr3 V= 4 3 . 3,14. 8,93 V = 2 950 cm3
SHRNUTÍ S = 4.π.r2 V = 𝟒 𝟑 .π.r3 POVRCH KOULE OBJEM KOULE Povrch koule vypočítáme jako součin čtyřnásobku čísla π a druhé mocniny poloměru koule r S = 4.π.r2 OBJEM KOULE Objem koule je čtyři třetiny součinu čísla π a třetí mocniny poloměru koule r V = 𝟒 𝟑 .π.r3
ZDROJE Přispěvatelé Wikipedie, Koule [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize 11. 05. 2013, 19:59 UTC, [citováno 23. 05. 2013] <http://cs.wikipedia.org/w/index.php?title=Koule&oldid=10313126> http://www.astro.cz/clanek/5331 Kula [online]. Wikipedia : wolna encyklopedia, 2013-05-07 10:25Z [dostęp: 2013-05-25 21:33Z]. Dostępny w Internecie: http://pl.wikipedia.org/w/index.php?title=Kula&oldid=36368896 Přispěvatelé Wikipedie, Ganymed (měsíc) [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize 9. 03. 2013, 05:16 UTC, [citováno 26. 05. 2013] <http://cs.wikipedia.org/w/index.php?title=Ganymed_(m%C4%9Bs%C3%ADc)&oldid=98 59081> Přispěvatelé Wikipedie, Měsíc [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize 6. 05. 2013, 10:06 UTC, [citováno 26. 05. 2013] <http://cs.wikipedia.org/w/index.php?title=M%C4%9Bs%C3%ADc&oldid=10290665> Přispěvatelé Wikipedie, Mercatorovo zobrazení [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize 4. 04. 2013, 14:54 UTC, [citováno 27. 05. 2013] <http://cs.wikipedia.org/w/index.php?title=Mercatorovo_zobrazen%C3%AD&oldid=1009 0850>
ZDROJE Dostupné z: http://office.microsoft.com http://mapasveta.info/svet/index.html http://www.tmapy.cz/public/tmapy/cz/_geodata/*geodata_kartografie/nastenne_ma py/!mapa_fyz.html http://www.posters.cz/plakaty/planetary-visions-psychical-map-of-the-world-v13251 http://www.posters.cz/plakaty/mapa-sveta-zlaty-inkoust-17-stoleti-v7249