Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Podobné prezentace


Prezentace na téma: "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."— Transkript prezentace:

1 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Dělitelnost přirozených čísel Prvočísla a čísla složená

2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Rozdělte 9 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 1. možnost: 1 hromádka s devíti jablky

3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Rozdělte 9 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 2. možnost: 3 hromádky se třemi jablky

4 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 1: Rozdělte 9 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 3. možnost: 9 hromádek s jedním jablkem

5 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jak tedy lze rozdělit 9 jablek? Nechat všechny pohromadě. Udělat jednu hromádku s devíti jablky. Rozdělit jablka na tři hromádky po třech jablcích. Rozdělit jablka po jednom. Udělat devět hromádek po jednom jablku = = = 9

6 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: Rozdělte 8 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 1. možnost: 1 hromádka s osmi jablky

7 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: Rozdělte 8 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 2. možnost: 2 hromádky se čtyřmi jablky

8 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: Rozdělte 8 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 3. možnost: 4 hromádky se dvěma jablky

9 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: Rozdělte 8 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 4. možnost: 8 hromádek s jedním jablkem

10 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jak tedy lze rozdělit 8 jablek? Nechat všechny pohromadě. Udělat jednu hromádku s osmi jablky. Rozdělit jablka na dvě hromádky po čtyřech jablcích. Rozdělit jablka po jednom. Udělat osm hromádek po jednom jablku = = = 8 Rozdělit jablka na čtyři hromádky po dvou jablcích = 8

11 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 3: Rozdělte 7 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 1. možnost: 1 hromádka se sedmi jablky

12 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad č. 2: Rozdělte 7 jablek na hromádky o stejném počtu jablek. Existuje-li více možností, ukažte všechny. 2. možnost: 7 hromádek s jedním jablkem

13 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jak tedy lze rozdělit 7 jablek? Nechat všechny pohromadě. Udělat jednu hromádku se sedmi jablky. Rozdělit jablka po jednom. Udělat sedm hromádek po jednom jablku = = 7

14 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Co jsme tedy zjistili? 9 jablek lze rozdělit na: 1. 9 = 9 - Jednu hromádku se všemi jablky. - Tři hromádky se třemi jablky = 9 - Devět hromádek s jedním jablkem = 9 Číslo 9 má tři dělitele: 1, 3 a 9. 8 jablek lze rozdělit na: 1. 8 = 8 - Jednu hromádku se všemi jablky. - Dvě hromádky se čtyřmi jablky = 8 - Čtyři hromádky se dvěma jablky = 8 - Osm hromádek s jedním jablkem. Číslo 8 má čtyři dělitele: 1, 2, 4 a = 8 7 jablek lze rozdělit na: 1. 7 = 7 - Jednu hromádku se všemi jablky. - Sedm hromádek s jedním jablkem = 7 Číslo 7 má dva dělitele: 1 a 7.

15 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jaká čísla podle počtu dělitelů tedy existují? 1.) Existují čísla, která mají právě dva různé dělitele – číslo jedna a sama sebe. Takovým číslům říkáme prvočísla. 13 = ) Existují čísla, která mají více než dva různé dělitele. Takovým číslům říkáme čísla složená. 12 = = = ) Existuje číslo, která má právě jednoho dělitele – samo sebe. Je to číslo 1. 1 = 1. 1

16 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A nyní něco na procvičení. Podtrhni červeně prvočísla: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

17 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A nyní něco na procvičení. Podtrhni červeně prvočísla: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

18 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A nyní něco na procvičení. Podtrhni zeleně čísla složená: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

19 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. A nyní něco na procvičení. Podtrhni zeleně čísla složená: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

20 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Závěr Prvočíslo je číslo, které má právě dva různé dělitele (číslo jedna a samo sebe). Druhy čísel podle počtu dělitelů: Složené číslo je číslo, které má víc než dva různé dělitele. Číslo 1 není ani prvočíslo ani číslo složené, neboť má jediného dělitele, samo sebe.


Stáhnout ppt "Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze."

Podobné prezentace


Reklamy Google