Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Matice Matice je tabulka čísel ve tvaru Pozn. : první index u složky zde značí číslo sloupce (pozice ve vodorovném směru), druhý index u složky značí číslo.

Podobné prezentace


Prezentace na téma: "Matice Matice je tabulka čísel ve tvaru Pozn. : první index u složky zde značí číslo sloupce (pozice ve vodorovném směru), druhý index u složky značí číslo."— Transkript prezentace:

1 Matice Matice je tabulka čísel ve tvaru Pozn. : první index u složky zde značí číslo sloupce (pozice ve vodorovném směru), druhý index u složky značí číslo řádku (pozice ve svislém směru). V tomto bodě se přednáška hrubě rozchází z většinou matematické literatury. Usnadní to ale studentům orientaci při sledování přednášky o výpočetní technice – pole se v programech značí tak, jak je to zavedeno na této průsvitce. Obvykle se značí velkými tiskacími písmeny (latinka) psanými tučně, popř. dvojitě. Jednotlivé prvky se pak značí stejným, ale malým (řeckým či latinským) písmenem opatřeným indexy, nebo jménem matice v závorce a indexy. prvek matice Pro projekt „Cesta k vědě“ (veda.gymjs.net) vytvořil V. Pospíšil Modifikace a šíření dokumentu podléhá licenci CC-BY-SA. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

2 Matice S maticemi lze pracovat jako s vektory (vektorový prostor matic), nicméně samy o sobě jsou velmi důležitými matematickými objekty. Reprezentují například soustavy rovnic, operátory a podobně, jak uvidíme později. Jsou s nimi zavedeny některé základní operace: Sčítání matic (vektorová operace, vyžaduje, aby matice měly stejné rozměry)

3 Matice Násobení matice číslem (vektorová operace) Násobení dvou matic (vyžaduje aby počet sloupců první byl stejný jako počet řádků druhé).

4 Násobení matic Takto matice násobit lze Takto matice násobit nelze X X Násobení matic není obecně komutativní!

5 Násobení matic Násobek těchto dvou matic je definováno jako matice o k řádcích a l sloupcích, kde X Násobíme postupně prvky z vybraného řádku první matice s prvky s vybraného sloupce druhé a sčítáme je. Poloha řádku v první matici a poloha sloupce v druhé udává polohu prvku v nové matici.

6 Násobení matic X 1. řádek 1. sloupec C = A.B C 11 = = 43 C 21 = = 20 C 12 = = 63 C 22 = = 41 C 13 = = 29 C 23 = = sloupec 2. řádek3. řádek =

7 Násobení matic Příklad Vynásobte matice X = X

8 Násobení matic Příklad Vynásobte matice X Toto je speciální případ – násobení matice a vektoru. Výsledkem je opět vektor. Velmi častý případ jak ve fyzice, tak v matematice. = X

9 Soustavy lineárních rovnic S maticemi jsou úzce spojeny soustavy lineárních rovnic. Soustavou n lineárních rovnic o obecně m neznámých x 1, x 2, …, x m (zde čísla) myslíme soustavu kde čísla α nazýváme koeficienty a čísla β pravými stranami. Nejčastěji se setkáváme s případem, kdy m = n, tedy počet neznámých je roven počtu rovnic. Příklad Řešte dosazovací metodou soustavu Pozn.: zde místo x 1, x 2, x 3 značíme proměnné x, y, z. Čísla α jsou rovny buď nulám, nebo jedničkám.

10 Soustavy lineárních rovnic Soustavu lineárních rovnic lze zapsat pomocí dvou vektorů a matice. Definujeme-li pak lze soustavu zapsat pomocí maticového násobení a rovnosti matic jako

11 Soustavy lineárních rovnic Příklad Zapište pomocí matice a vektorů soustavu Příklad Zapište pomocí matice a vektorů soustavu

12 Gaussova eliminační metoda Pro řešení soustavy rovnic existuje několik metod. Nejzákladnější je dosazovací, která je ale pro soustavy pro více než se třemi neznámými velmi pracná. Jednodušší metoda je tzv. Gaussova eliminační. Spočívá v aplikaci následujících ekvivalentních úprav: K oběma stranám rovnice lze přičíst libovolné stejné číslo – rovnost se tím nezmění. Obě strany rovnice lze vynásobit jedním nenulovým číslem – rovnost se nezmění. Lze prohodit pořadí řádků soustavy – řešení soustavy se tím nezmění. První ekvivalentní úpravu aplikujeme ve formě chytrého triku – protože mluvíme o rovnostech, levá a pravá strana libovolné rovnice představují shodná čísla. Můžeme tedy levou stranu rovnice přičíst (či odečíst) k levé straně jiné rovnice a pravou stranu k pravé – a řešení soustavy se nezmění: -

13 Gaussova eliminační metoda Vidíme, že jsme se zcela zbavili proměnné x v prvních dvou rovnicích. Aplikujme postup znovu: - Po těchto dvou jednoduchých krocích ihned vidíme, že z = 3/2. Pokračujeme dále: - + Řešením soustavy jsou čísla x = -1/2, y = 5/2, z = 3/2. Čas na práci, který jsme ušetřili oproti dosazovací metodě je znatelný i zde.

14 Gaussova eliminační metoda Tento postup je nesmírně výhodný zejména ve spojení s maticovým zápisem soustavy. Zapíšeme-li si soustavu zkráceně ve tvaru K libovolnému řádku matice lze přičíst (odečíst) libovolný jiný Každý řádek matice lze vynásobit libovolným nenulovým číslem Lze prohodit pořadí řádků matice Vhodnými kombinacemi těchto úprav se pak snažíme dosáhnout tzv. horního stupňovitého tvaru matice vlevo od čáry (pod hlavní diagonálou jsou samé nuly) a posléze takové formy, kde jsou na hlavní diagonále jedničky, všude jinde nuly. Čísla za čárou jsou pak řešením soustavy. znamenají ekvivalentní úpravy následující: Rozšířená matice soustavy

15 Gaussova eliminační metoda Příklad Řešte Gaussovou eliminací soustavu Toto je horní stupňovitý tvar

16 Gaussova eliminační metoda Příklad Řešte Gaussovou eliminací soustavu Toto je řešení soustavy

17 Gaussova eliminační metoda Příklad Řešte Gaussovou eliminací soustavy Pozn. : zde je více rovnic než neznámých. Musíme počítat s tím, že soustavy s obecně různým počtem proměnných a rovnic nemusí mít žádné řešení či dokonce mohou mít nekonečně mnoho řešení – a ty je potřeba všechny najít.

18 Hodnost matice Definice 40. Buď (x 1, x 2, …, x n ) soubor vektorů. Číslo dim [x 1, x 2, …, x n ] λ nazýváme hodnost souboru. Definice 41. Buď A matice. Hodností matice nazveme hodnost jejích řádků coby vektorů (n-tic). Zaměníme pořadí vektorů v souboru Vynásobíme libovolný vektor nenulovým číslem K libovolnému vektoru přičteme jiný vektor Pozn. : Hodnost souboru se nezmění, pokud Vynecháme ze souboru vektor, který je lineární kombinací ostatních Pozn. : Z předchozí poznámky plyne, že hodnost matice se nezmění, provedeme-li libovolnou ekvivalentní úpravu. Pozn. : Matice má hodnost h, je-li h jejich řádků lineárně nezávislých.

19 Frobeniova věta Frobeniova věta : Věta 7. 1) Soustava m lineárních rovnic pro n neznámých Ax = b je řešitelná, právě když hodnost matice soustavy je rovna hodnosti rozšířené matice soustavy: 2) Je-li hodnost matice soustavy h(A) = h, má soustava Ax = 0 právě n-h lineárně nezávislých řešení, tj. Je-li navíc h(A|b) = h, pak kdeje libovolné vybrané (partikulární) řešení soustavy Ax = b.

20 Gaussova eliminační metoda Příklad Řešte Gaussovou eliminací soustavy

21 Transponovaná matice Definice 42. Buď A matice. Matici k ní transponovanou vytvoříme „překlopením podle hlavní diagonály“, tj Matici transponovanou značíme malým T v horním indexu.

22 Permutace Definice 43. Nechť n je přirozené číslo. Každé prosté zobrazení množiny samu na sebe nazveme permutací množiny. Množinu všech permutací množiny budeme značit S n. Pozn. : kolik prvků má množina S n ? Podívejme se na permutace množiny {1, 2, 3}. Napišme si, jak je možné zobrazení utvořit: { 1, 2, 3 } Pro jednoduchost zapisujeme ( 1, 2, 3 ) ( 1, 3, 2 ) ( 2, 1, 3 ) ( 2, 3, 1 ) ( 3, 1, 2 ) ( 3, 2, 1 )

23 Permutace Počet všech permutací lze odvodit velmi snadno. Máme n čísel a potřebujeme je rozmístit na n míst. Umístíme první – a na to máme n možností. ( ) Umístíme druhé – a na to máme n-1 možností, protože jedna z pozic je již obsazena prvním číslem. Celkem je tedy n(n-1) možností, jak umístit dvě čísla. ( ) Umístíme třetí – a na to máme n-2 možností, protože dvě z pozic je již obsazena prvním a druhým číslem. Celkem je tedy n(n-1)(n-2) možností, jak umístit tři čísla. ( ) Umístíme čtvrté – a na to máme n-3 možností, protože dvě z pozic je již obsazena prvním a druhým a třetím číslem. Celkem je tedy n(n-1)(n-2)(n-3) možností, jak umístit čtyři čísla. A tak dále. Ve výsledku počet prvků S n je toto číslo nazýváme n faktoriál.

24 Permutace Definice 44. Permutaci, ve které jsou prohozena pouze dvě čísla a ostatní jsou na svých pořadových místech, nazýváme transpozicí. Každou další permutaci (mimo identické) lze zkonstruovat pomocí skládání transpozic. Počet vnoření transpozic pak udává znaménko permutace (signum): Množina všech permutací z množiny { 1, 2, …, n } Jedna permutace z S n Znaménko (signum) permutace. Číslo l udává, z kolika transpozic je permutace složená. Je-li sgn π = +1, nazýváme permutaci sudou, je-li sgn π = -1, nazýváme ji lichou.

25 Permutace Příklad Určete permutaci složenou s následujících transpozic. Jaké má znaménko? ( 1, 2, 5, 4, 3 )( 3, 2, 1, 4, 5 )( 1, 4, 3, 2, 5 )oo ( 1, 2, 3, 4, 5 ) ( 1, 2, 5, 4, 3 ) ( 3, 2, 1, 4, 5 )( 1, 4, 3, 2, 5 ) ( 1, 2, 5, 4, 3 )( 5, 2, 1, 4, 3 )( 5, 4, 1, 2, 3 ) sgn ( 5, 4, 1, 2, 3 ) = -1 Platí, že pro libovolné permutace platí sgn (π 1 π 2 ) = sgn (π 1 ) x sgn (π 2 ). Permutace je zobrazení. Hodnota permutace aplikované na daný prvek se značí π(k) kde k je číslo z množiny { 1, 2, …, n }.

26 Determinant Definice 45. Nechť A je matice z T nn (tj. čtvercová matice), prvky této matice jsou α nn. Číslo nazýváme determinantem matice A a značíme det A. Pozn. : pro determinant platí det E = 1 (E je jednotková matice s jednič- kami na hlavní diagonále a nulami jinde). det (AB) = det A. det B det A T = det A další značení Determinant je roven nule, je-li jeden z řádků matice LK ostatních Prohodíme-li dva řádky, determinant změní znaménko

27 Determinant Platí : Druhý vztah platí pro libovolný sloupec respektive řádek.

28 Determinant Sčítáme přes všechny permutace množiny { 1, 2 }. Těch není mnoho : ( 1, 2 )( 2, 1 ) dle vzorce pak snadno určíme vynásobené tyto dva prvky s plusem vynásobené tyto dva prvky s mínusem

29 Determinant Sčítáme přes všechny permutace množiny { 1, 2, 3 }. Těch je šest : ( 1, 2, 3 )( 1, 3, 2 )( 2, 1, 3 )( 2, 3, 1 )( 3, 1, 2 )( 3, 2, 1 ) sudá lichá

30 Determinant kladné členyzáporné členy

31 Determinant kladné členy záporné členy

32 Determinant Sčítáme přes všechny permutace množiny { 1, 2, 3, 4 }. Těch je dvacet čtyři : … FUJ! Tohle už asi jen tak ručně nepůjde… Věta 8. Buď. Pak platí kde k je nějaký zvolený sloupec a (det A) ki determinat matice, která vznikne z původní vynecháním k-tého sloupce a i-tého řádku.

33 Determinant vytýkáme 2 z pos- ledního sloupce k poslednímu řádku přičteme první rozvoj determinantu podle prvního sloupce první z determinantů má LZ řádky a je tedy 0 Pozn. : rozvoj lze samozřejmě dělat i podle řádků.

34 Determinant Příklad Spočtěte determinant Příklad Spočtěte determinant Příklad Spočtěte determinantkde

35 Shrnutí Matice : sčítání, násobení číslem a násobení matic Soustavy lineárních rovnic Matice soustavy, rozšířená matice soustavy Gaussova eliminační metoda, horní stupňovitý tvar Hodnost matice Frobeniova věta Homogenní a partikulární řešení Transponovaná matice Permutace Determinant Rozvoj determinantu dle sloupce (řádku)


Stáhnout ppt "Matice Matice je tabulka čísel ve tvaru Pozn. : první index u složky zde značí číslo sloupce (pozice ve vodorovném směru), druhý index u složky značí číslo."

Podobné prezentace


Reklamy Google