Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Modelování a simulace Ing. Lukáš OTTE kancelář: A909 telefon:3840.

Podobné prezentace


Prezentace na téma: "Modelování a simulace Ing. Lukáš OTTE kancelář: A909 telefon:3840."— Transkript prezentace:

1 Modelování a simulace Ing. Lukáš OTTE kancelář: A909 telefon:3840

2 Obsah předmětu:  Tvorba matematických modelů  Tvorba teoretických počítačových modelů  Seznámení s prostředím Simulink  Realizace počítačových modelů v prostředí Simulink

3 Fáze simulačního procesu

4 Analýza:  Specifikace dějů probíhajících v procesu  Vymezení působících vlivů  Určení veličin popisujících proces  Rozhodnutí o zapojení jednotlivých prvků do modelu  Zavedení zjednodušujících předpokladů

5 Fáze simulačního procesu Teoretický model (ne Teoretický počítačový model)  Je přehledný a jednoduchý  Umožňuje snazší řešení matematického modelu (výsledných rovnic)  Nepopisuje zcela přesně skutečnost

6 Fáze simulačního procesu Některé zjednodušující předpoklady:  Rozdělení systému na jednodušší subsystémy  Zavádění neexistujících forem (ideální plyn apod.)  Předpoklad nezávislostí (vlastnost látek na teplotě)  Zanedbání ztrát  Linearizace nelineárních závislostí  Použití empiricky zjištěných vztahů a závislostí

7 Fáze simulačního procesu Tvorba matematického modelu: Využíváme matematické rovnice vyjadřující známé zákony a vztahy (fyzikální, fyzikálně – chemické a chemické) Postupujeme ve třech krocích: 1) výběr matematického popisu zákonitostí 2) vytvoření modelových rovnic (včetně doplnění zjednodušení) 3) určení podmínek řešení (počáteční a okrajové podmínky)

8 Fáze simulačního procesu Volba simulačního programu Postupujeme ve třech krocích: 1) volba metody řešení modelových rovnic 2) zpracování modelových rovnic 3) sestavení výpočetního programu Realizace simulačního modelu Výsledkem je vytvoření počítačového modelu použitelného v praxi. Je potřeba provést následující: 1) Identifikaci modelu - nalezení neznámých parametrů 2) Verifikaci modelu - kontrola správnosti modelu

9 Vytváření matematických modelů Příklad 1: Je třeba analyticky popsat a simulačně ověřit proces hromadění (akumulaci, skladování) materiálu na skládce. Analýza systému a teoretický model: m(t) [kg]- celkové množství materiálu na skládce q 1 (t) [kg*sˆ1] dovážené množství q 2 (t) [kg*sˆ1] odvážené množství

10 Vytváření matematických modelů Výběr matematického popisu zákonitostí Bilanční rovnice: Vytvoření modelových rovnic Úpravou získáme lineární diferenciální rovnici: Určení podmínek řešení Počáteční podmínka říká, že množství na skládce nemůže být záporné, a že na počátku již nějaké množství na skládce bylo

11 Vytváření matematických modelů Integrací vztahu při uvažování počátečních podmínek získáme:

12 Vytváření matematických modelů Příklad 2: Mějme systém tvořený nádrží s přítokem a odčerpáváním vody. Je potřeba identifikovat regulovanou soustavu. Analýza systému: q1(t) [m ˆ 3*s ˆ -1] - objemový přítok, q2(t) [m ˆ 3*s ˆ -1] - odčerpávané množství - odtok h(t) [m] - výška hladiny v nádrži S [m ˆ 2] - plošný obsah hladiny  (t) [rad*s ˆ -1] - úhlová rychlost čerpadla k1 [m ˆ 3*rad ˆ -1] - konstanta čerpadla

13 Vytváření matematických modelů Teoretický model:

14 Vytváření matematických modelů Výběr matematického popisu zákonitostí – základní předpoklady: Hladina závislá na objemu kapaliny a ploše nádrže: Objem v nádrži je závislý na přítoku a odtoku: Odtok je dán konstrukcí čerpadla (úhlová rychlost a konstanta čerpadla)

15 Vytváření matematických modelů Vytvoření modelových rovnic Platí opět bilanční rovnice: Úpravou získáme lineární diferenciální rovnici: Určení podmínek řešení Předpokladem je, že výška hladiny na počátku odpovídá ustálenému stavu (přítok = odtok) a mít pouze kladnou hodnotu omezenou pouze její konstrukcí..

16 Vytváření matematických modelů Integrací předchozího vztahu při uvažování počátečních podmínek dostaneme ekvivalentní vyjádření systému:

17 Vytváření matematických modelů Příklad 3: Mějme stejnosměrný motor řízený proudem kotvy za předpokladu, že celková indukčnost kotvy je zanedbatelně malá a že buzení je konstantní. Jako výstupní veličiny zde uvažujeme úhlovou rychlost a úhlové natočení hřídele motoru. u a (t) [V] – napětí kotvy, i a (t) [A] – proud kotvy, R a [  ] – celkový odpor kotvy, m h (t) [N m] – hnací moment, m z (t) [N m] – zátěžný moment, J [kg m2] – celkový moment setrvačnosti,  [Wb] – konstantní magnetický tok,  (t) [rad s-1] – úhlová rychlost,  (t) [rad] – úhlové natočení

18 Vytváření matematických modelů

19  Vycházíme zde z obecného předpokladu pohybové rovnice:  U stejnosměrného motoru s konstantním buzením je hnací moment m h (t) přímo úměrný proudu kotvy i a (t), z čehož vyplývá, že, kde km [N m A-1] – je konstanta motoru  Mezi úhlovou rychlostí (t) a úhlovým natočením j(t) platí jednoduchý vztah

20 Vytváření matematických modelů Poslední dvě diferenciální rovnice tvoří matematický model. Následnou integrací vztahů za předpokladu nulových počátečních podmínek získáme:

21 Vytváření matematických modelů


Stáhnout ppt "Modelování a simulace Ing. Lukáš OTTE kancelář: A909 telefon:3840."

Podobné prezentace


Reklamy Google