Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Faktory a jejich uspořádání Faktor (kvalitativní proměnná) factor (= categorial variable = categorical v.) Hladina faktoru factor level Máme-li dva nebo.

Podobné prezentace


Prezentace na téma: "Faktory a jejich uspořádání Faktor (kvalitativní proměnná) factor (= categorial variable = categorical v.) Hladina faktoru factor level Máme-li dva nebo."— Transkript prezentace:

1 Faktory a jejich uspořádání Faktor (kvalitativní proměnná) factor (= categorial variable = categorical v.) Hladina faktoru factor level Máme-li dva nebo více faktorů, záleží správná volba modelu ANOVA na jejich vzájemném vztahu (uspořádání, design) Faktoriální (factorial design) x hierarchické (nested = hierarchical design)

2 Faktoriální uspořádání Každá hladina určitého faktoru je kombinována s každou hladinou ostatních faktorů Mají-li naše faktory jen 2 hladiny, pak při 2 faktorech máme 4 kombinace při 3 faktorech máme 8 kombinací... Obecně, mají-li faktory A, B, C,... a, b, c,... hladin, pak je počet kombinací a*b*c*...

3 Hierarchické uspořádání tři lokality na každé lokalitě tři kytky na každé pět měření Faktor Kytka je vložen do faktoru Lokalita (Kytka is nested in Lokalita) Kytka 1 (kyt1) z první lokality nemá nic společného s kytkou 1 z druhé lokality

4 Faktoriální uspořádání: vyváženost Je nejlepší, pokud máme pro každou kombinaci hladin faktorů stejný počet pozorování, dostáváme pak nejsilnější a nejvíce robustní test Přinejmenším bychom ale měli mít proporční uspořádání

5 Dvoucestná ANOVA bez interakce Nejprve začneme s modelem, ve kterém předpokládáme, že vlivy hnojení a kosení jsou aditivní: X ijk =  +  i +  j +  ijk  je celkový (společný) průměr (např. 22.5)  je vliv kosení (např.  1 =-5.0,  2 =+5.0)  je vliv hnojení (např.  1 =+2.5,  2 =-2.5)  je náhodná variabilita, nezávislá na hodnotách faktorů

6 Dvoucestná ANOVA bez interakce Aditivitu faktorů často nemůžeme předpokládat a priori, ověřujeme ji použitím neaditivního modelu (s interakcí): test interakčního členu a interaction plot H 0A :  1 =  2 =0 hnojení nemá vliv H 0B :  1 =  2 =0 kosení nemá vliv H 0AB :  11 =  12 =  21 =  22 =0 není interakce SS Total =SS hnojeno +SS koseno +SS hnojeno*koseno +SS error

7 Dvoucestná ANOVA s interakcí Model bez interakce: X ijk =  +  i +  j +  ijk Přidáme-li interakci: X ijk =  +  i +  j +  ij +  ijk Interakce mezi faktory je symetrická, a tak nám říká buď: „velikost (případně i směr) vlivu hnojení závisí na tom, zda je plocha kosená nebo ne“ nebo „velikost (případně i směr) vlivu kosení závisí na tom, zda je plocha hnojená nebo ne“ Speciální případ: “kosení má vliv jen u nehnojených ploch“

8 Dvoucestná ANOVA s interakcí Není interakce: Je interakce: Když popisuji výsledky, nestačí říct, že interakce je průkazná, musím uvést proč (kde a jaká je odchylka od aditivity) Je třeba zdůraznit, že spojování průměrů tady není interpolací: jde nám o zobrazení interakce pomocí (ne)rovnoběžnosti čar Hlavní efekt (main effect)

9 Méně častý typ interakce Vliv 2 léků (A a B) na snížení teploty testován faktoriálním experimentem Hlavní efekt léku A vyšel neprůkazný, hlavní efekt léku B také, ale vyšla průkazná interakce Interaction plot vypadá takto: Výsledek neznamená, že by léky nebyly účinné! Jejich účinek se při společném podání ruší.

10 F statistika v dvoucestné ANOVA faktory s pevným efektem F hnojeno, F koseno, F hnojeno*koseno jsou všechny počítány dělením příslušného MS hodnotou MS Error Například: F hnojeno =352.8/8.025 = Není tomu ale tak v případě faktorů s náhodným efektem!

11 Mnohonásobná porovnání Ve faktoriální analýze variance (s 2 a více faktory) provádím obdobně jako ve one-way ANOVA V našem příkladu nemá smysl: máme jen dvě hladiny pro každý z faktorů Mohu porovnávat buď pro hlavní efekty nebo i pro interakci (tj. všechny faktoriálně vytvořené skupiny mezi sebou) Co budu porovnávat rozhoduji já (ovšem s ohledem na výsledky testu)

12 F statistika v dvoucestné ANOVA mixed effects (náhodný+pevný) Zkoumám vliv kosení na druhovou bohatost, máme tři lokality, na každé mám tři kosené a tři nekosené plochy F koseno = MS koseno / MS lokalita*koseno tj / 5.39

13 Experimentální uspořádání: 1 – úplně znáhodněné Máme experiment se 4 zásahy (K, Z1, Z2, Z3) a se 4 opakováními pro každý typ zásahu (= pro každou hladinu faktoru) Je-li všech 16 ploch rozmístěno zcela náhodně (completely randomised design), hodnotím jednocestnou analýzou variance

14 Experimentální uspořádání: 2 – zcela nesprávné Vliv zásahu nelze v datech získaných z tohoto špatného uspořádání odlišit od vlivu umístění v prostoru Pojem pseudoreplikace (pseudoreplication)

15 Experimentální uspořádání: 3 – znáhodněné bloky Randomised blocks, ale pozor, někdy též jako Completely randomised blocks! Náhodný faktor Blok, two-way ANOVA bez interakce. Silnější test, pokud se bloky liší

16 Experimentální uspořádání: 4 – Latinský čtverec Latin square Známe směry prostorové variability a buď je jen jeden (např. vlhkost) nebo jsou kolmé 3-way ANOVA, náhodné fak. řádek a sloupec

17 Friedmanův test Neparametrický test, zobecnění Wilcoxonova testu Založeno na pořadí hodnot (pro jednotlivé hladiny faktoru) uvnitř bloků a je počet hladin studovaného faktoru b je počet bloků R i je součet hodnot pořadí pro i-tou hladinu

18 Transformace: problémy s aditivitou 1 Porovnávám výšky sedmikrásek a slunečnic a jejich odpověď na přidání živin Faktoriální uspořádání, 2 faktory s pevným efektem a 2 hladinami (druh a živiny) Tři testovatelné hypotézy (2 hlavní efekty plus interakce): 1.výška sedmikrásek a slunečnic se neliší 2.výška rostlin se mění po přidání živin 3.vliv přidání živin je stejný pro oba druhy

19 Transformace: problémy s aditivitou 2 Lze očekávat heterogenitu variancí (hodnoty výšky budou mít asi větší varianci u slunečnic než u sedmikrásek) S.D. bude lineárně závislá na průměru (CV bude konstantní) Interakce v ANOVA modelu testuje aditivitu, a tedy nárůst výšky díky přidání živin stejný (v cm) u obou druhů – např. 10 cm:

20 Transformace: problémy s aditivitou 3 Taková aditivita ale neodpovídá „biologické realitě“ – lze spíše očekávat nárůst proporční, např. o 100% Odpovídající model pro vliv druhu (slunečnice je 10-krát vyšší než sedmikráska; hnojení zvýší výšku 2-krát) je: Chceme-li dostat model ANOVA, musíme logaritmovat Tabulka logaritmů průměrných výšek pak vypadá takto:

21 Logaritmická transformace Pokud byla v původních datech S.D. lineárně závislá na průměru, vede k homogenitě var. Mění multiplikativní efekty na aditivní Mění lognormální rozdělení  na normální Problém s nulami: v biologických datech časté (pokryvnost či početnost druhu ve vzorku) X’ = log(X+c), c by mělo odpovídat škále hodnot X (c=1 vhodné pro počty, procenta) Přičtení c narušuje převod multiplikativity na aditivitu

22 Jiné transformace Předpokládáme-li pro závislou proměnnou Poissonovu distribuci: Pro procenta a podíly (na škále 0 – 1):

23 Hierarchické uspořádání (nested design) V příkladě je faktor Kytka jasně s náhodným efektem, u faktoru Lokalita si lze představit obě možnosti. Takto vypadají nejčastější případy hierarchické analýzy variance Vyrovnanost počtu pozorování je i zde velmi důležitá tři lokality na každé lokalitě tři kytky na každé pět měření

24 Hierarchické uspořádání příklad s délkou trubky

25 Hierarchické uspořádání příklad s délkou trubky 2 Při rozkladu sumy čtverců (SS) počítáme čtverce rozdílů každého pozorování (průměru) od jeho hierarchicky nejbližšího vyššího příslušného průměru Jsou-li hierarchicky nižší efekty náhodné, je F statistikou poměr MS efektu a MS nejbližšího hierarchicky nižšího efektu

26 Nejčastější použití hierarchické analýzy variance Rozklad variability znaků mezi jednotlivé hierarchické úrovně (taxonomické / prostorové) Často mne zajímá především hierarchicky nejvýše postavený faktor, podřazené faktory umožňují oddělení variability na nižších úrovních  zvýšení síly testu Příklad: vliv pastvy – 6 ohrad: ale v každé 5 ploch (zachytí variabilitu uvnitř ohrad), z každé plochy 3 vzorky pro analýzy (zachytí variabilitu v biomase a v anal. metodě)

27 Pseudoreplikace ještě jednou Pozor na směsné vzorky: umožní zprůměrovat „nezajímavou variabilitu“, ale ztrácí se nezávislost pozorování v nich zahrnutých vzorků! Tohle nejsou nezávislá pozorování !!

28 Složitější modely ANOVA Faktoriálně a hierarchicky uspořádané faktory se mohou různě kombinovat, některé s pevným a některé s náhodným efektem Split-plot design: whole-plots vs. split-plots Opakovaná pozorování (repeated measures) BACI: before-after control-impact


Stáhnout ppt "Faktory a jejich uspořádání Faktor (kvalitativní proměnná) factor (= categorial variable = categorical v.) Hladina faktoru factor level Máme-li dva nebo."

Podobné prezentace


Reklamy Google