Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Užití poměru (graficky)
Advertisements

Užití poměru (graficky)
Konstrukce lichoběžníku
Konstrukce trojúhelníku
Užití Thaletovy kružnice
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Sestrojení úhlu o velikosti 60° pomocí kružítka.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Základní konstrukce Rovnoběžky.
Základní konstrukce Kolmice.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce lichoběžníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Užití Thaletovy kružnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Užití poměru (graficky)
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Množina bodů dané vlastnosti
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Užití Thaletovy kružnice
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Známe-li délku úhlopříčky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Obdélník (známe-li délky jeho stran)
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Základní konstrukce Kolmice.
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Množina bodů dané vlastnosti
Konstrukce trojúhelníku
Čtverec (známe-li délku jeho strany)
Konstrukce trojúhelníku
Konstrukce rovnoběžníku
Konstrukce kosočtverce
Konstrukce rovnoběžníku
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce trojúhelníku Známe-li délku strany, úhel k ní přilehlý a úhel protilehlý. Autor obrázků © Mgr. Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník a jeho vlastnosti Trojúhelník je rovinný geometrický útvar sestávající ze tří stran, tří vrcholů a tří vnitřních úhlů. Zopakujeme základní vlastnosti, které nám často pomohou při pozdějších konstrukcích.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník - označování Pozor při značení vrcholů a stran trojúhelníku. Strana a proti vrcholu A, strana b proti vrcholu B, strana c proti vrcholu C. Zopakujeme základní vlastnosti, které nám často pomohou při pozdějších konstrukcích.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník – součet vnitřních úhlů Součet vnitřních úhlů trojúhelníku je vždy 180°. 37° 73° 70° ____ 180° Zopakujeme základní vlastnosti, které nám často pomohou při pozdějších konstrukcích.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Náčrt: A nyní již přikročíme ke konstrukci. Příklad: Sestrojte trojúhelník ABC, ve kterém c = 7 cm,  = 35°,  = 60°. c  =35°  =60°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Začneme jako vždy stranou, v tomto případě stranou c, při které leží jeden zadaný úhel. Následuje použití zadaného úhlu – dostaneme polopřímku AY svírající se stranou AB úhel 35°. p Y Náčrt a rozbor

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jako poslední využijeme ze zadání úhel . Kde přesně jej ale sestrojit? p Y Náčrt a rozbor 60° V Zvolíme na polopřímce AY libovolný bod V, který se nám stane vrcholem úhlu o požadované velikosti 60°. Námi sestrojený úhel, přesněji řečeno jeho rameno však neprochází bodem B, jak bychom potřebovali. „Uděláme“ si tam tedy ještě jeden úhel. 60° C

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Jako poslední využijeme ze zadání úhel . Kde přesně jej ale sestrojit? p Y Náčrt a rozbor 60° V Zvolíme na polopřímce AY libovolný bod V, který se nám stane vrcholem úhlu o požadované velikosti 60°. Námi sestrojený úhel, přesněji řečeno jeho rameno však neprochází bodem B, jak bychom potřebovali. „Uděláme“ si tam tedy ještě jeden úhel. 60° C Co můžeme říci o vzniklých trojúhelnících? Jaké jsou? A co tedy platí konkrétně pro „zelená“ ramena úhlů? Trojúhelníky jsou podobné, a ramena tudíž rovnoběžná!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. p Y Náčrt a rozbor 60° V Uvedené rovnoběžnosti tedy při konstrukci využijeme. Jak? Přesně tak, jak jsme si to „ukázali“ při rozboru. Narýsujeme úhel o velikosti 60° v libovolném bodě na polopřímce AY a následně s jeho nově vzniklým ramenem sestrojíme rovnoběžku procházející bodem B. 60° C Nepamatujete si už, jak se rovnoběžka procházející daným bodem sestrojuje? Pak se tedy podívejte zde.zde

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 1. c; c =  AB  = 7 cm Zápis a konstrukce: 3. V; V   AY 4.  ;  =  WVA  = 60°,  VW 5. p; p   VW, B  p 2.  ;  =  YAB  = 35°,  AY Příklad: Sestrojte trojúhelník ABC, ve kterém c = 7 cm,  = 35°,  = 60°. y Y V C A B p W 6. C; C  p   AY 7.  ABC c

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výsledný trojúhelník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem C) Konstrukci proměříme, zda odpovídá zadání a trojúhelník vytáhneme silněji. A takto vypadá celá konstrukce.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení Sestrojte trojúhelník ABC, jestliže: 1.) a = 4 cm,  = 120°,  = 30° 2.) c = 5 cm,  = 50°,  = 60° 3.) b = 3 cm,  = 95°,  = 20°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Napadlo někoho z vás během konstrukcí jiné možné řešení? c  =35°  =60°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Co takhle využít vlastnosti součtu všech vnitřních úhlů trojúhelníku? c  =35°  =60°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Kolik stupňů nám zbývá na třetí úhel, je-li součet všech tří 180°? c  =35°  =60°  =85°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklad tak můžeme převést na konstrukci podle věty usu. c  =35°  =60°  =85°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přeji vám mnoho přesnosti při rýsování!

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce rovnoběžky procházející daným bodem mimo přímku I tentokrát lze nejsnadněji rovnoběžku narýsovat pomocí trojúhelníku s ryskou p q a to tak, že se ryska přiloží na přímku, a podle hrany trojúhelníku narýsujeme pomocnou kolmici a k této pomocné kolmici pak další kolmici procházející již daným bodem A. q  p A A  qA  q Zpět