III. Tepelné fluktuace: lineární oscilátor KOTLÁŘSKÁ 10. BŘEZNA 2009 F4110 Kvantová fyzika atomárních soustav letní semestr 2009 - 2010.

Slides:



Advertisements
Podobné prezentace
2.2. Dynamika hmotného bodu … Newtonovy zákony
Advertisements

Chemická termodynamika I
KINETICKÁ TEORIE STAVBY LÁTEK.
Lekce 7 Metoda molekulární dynamiky I Úvod KFY/PMFCHLekce 7 – Metoda molekulární dynamiky Osnova 1.Princip metody 2.Ingredience 3.Počáteční podmínky 4.Časová.
IDEÁLNÍ PLYN Stavová rovnice.
IDEÁLNÍ PLYN.
Entropie v nerovnovážných soustavách
Lekce 2 Mechanika soustavy mnoha částic
Přednáška 12 Diferenciální rovnice
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
Soustava částic a tuhé těleso
FI-05 Mechanika – dynamika II
Statistická mechanika - Boltzmannův distribuční zákon
Molekulová fyzika a termika
Radiální elektrostatické pole Coulombův zákon
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
Tření Třecí síla. (Učebnice strana 91 – 95)
Elementární částice Leptony Baryony Bosony Kvarkový model
Ing. Lukáš OTTE kancelář: A909 telefon: 3840
Ideální plyn Michaela Franková.
Fyzikálně-chemické aspekty procesů v prostředí
KINETICKÁ TEORIE LÁTEK
IX. Vibrace molekul a skleníkový jev KOTLÁŘSKÁ 23.DUBNA 2008 F4110 Kvantová fyzika atomárních soustav letní semestr
Fyzikální systémy hamiltonovské Celková energie systému je vyjádřená Hamiltonovou funkcí H – hamiltoniánem Energie hamiltonovského systému je funkcí zobecněné.
Chemie anorganických materiálů I.
Mechanika soustavy hmotných bodů zde lze stáhnout tuto prezentaci i učební text, pro vaše pohodlí to budu umisťovat také.
II. Tepelné fluktuace: Brownův pohyb
Zpomalování v nekonečném prostředí s absorpcí
Pojem účinného průřezu
Kmity HRW kap. 16.
Experimentální fyzika I. 2
I. Měřítka kvantového světa Cvičení
III. Tepelné fluktuace: lineární oscilátor KOTLÁŘSKÁ 9. BŘEZNA 2011 F4110 Kvantová fyzika atomárních soustav letní semestr
2. Vybrané základní pojmy matematické statistiky
Jméno: Miloslav Dušek Fakulta: Strojní Datum:
Monte Carlo simulace Experimentální fyzika I/3. Princip metody Problémy které nelze řešit analyticky je možné modelovat na základě statistického chování.
I. Měřítka kvantového světa Cvičení KOTLÁŘSKÁ 2. BŘEZNA 2011 F4110 Kvantová fyzika atomárních soustav letní semestr
5.4. Účinné průřezy tepelných neutronů
IX. Vibrace molekul a skleníkový jev cvičení
II. Tepelné fluktuace: Brownův pohyb
Kmitání.
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
BioTech 2011, Strážná. O čem to bude? Stochastické simulace Diferenciální rovnice (ODR) Automaty.
Moment setrvačnosti momenty vůči souřadnicovým osám x,y,z
Molekulová fyzika 2. přednáška „Teplota“.
Kmitání mechanických soustav I. část - úvod
Kmitání mechanických soustav 1 stupeň volnosti – vynucené kmitání
II. Tepelné fluktuace: lineární oscilátor KOTLÁŘSKÁ 5. BŘEZNA 2008 F4110 Kvantová fyzika atomárních soustav letní semestr
II. Tepelné fluktuace: Brownův pohyb
VIII. Vibrace víceatomových molekul cvičení
II. Tepelné fluktuace: Brownův pohyb Cvičení KOTLÁŘSKÁ 5. BŘEZNA 2014 F4110 Kvantová fyzika atomárních soustav letní semestr
Fyzika pro lékařské a přírodovědné obory Ing. Petr Vácha ZS – Termika, molekulová fyzika.
III. Tepelné fluktuace: lineární oscilátor Cvičení KOTLÁŘSKÁ 12. BŘEZNA 2014 F4110 Kvantová fyzika atomárních soustav letní semestr
Radovan Plocek 8.A. Stavové veličiny Izolovaná soustava Rovnovážný stav Termodynamická teplota Teplota plynu z hlediska mol. fyziky Teplotní stupnice.
Molekulová fyzika 2. Sada pomocných snímků „Teplota“
Fyzika I-2016, přednáška Dynamika hmotného bodu … Newtonovy zákony Použití druhého pohybového zákona Práce, výkon Kinetická energie Zákon zachování.
Molekulová fyzika a termika
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Moderní poznatky ve fyzice Některé jevy moderní termodynamiky
III. Tepelné fluktuace: lineární oscilátor
Metoda molekulární dynamiky
Kmity HRW2 kap. 15 HRW kap. 16.
III. Tepelné fluktuace: lineární oscilátor Cvičení
IDEÁLNÍ PLYN.
2. přednáška Differenciální rovnice
Vnitřní energie plynu, ekvipartiční teorém
II. Tepelné fluktuace: lineární oscilátor
Rozdělení pravděpodobnosti
Rotační kinetická energie
Transkript prezentace:

III. Tepelné fluktuace: lineární oscilátor KOTLÁŘSKÁ 10. BŘEZNA 2009 F4110 Kvantová fyzika atomárních soustav letní semestr

Úvodem Podruhé bez Planckovy konstanty Molekulární chaos: Fluktuace a stochastická dynamika Dvě cesty:  výpočet středních hodnot  přímá simulace jednotlivých realizací náhodných procesů  most: ergodické chování systému v termostatu Hlavní formální prostředek dnes: Langevinova rovnice -- prototyp stochastických diferenciálních rovnic

3 Poslední folie před týdnem – Kapplerův pokus

4 Ekvipartiční zákon 

5 Ergodičnost Rovnovážné systémy jsou zvláštní. Jsou na konci cesty, všechna vnitřní napětí v systému se vyrovnají a nastane zdánlivý klid. Pod ním však kolotá věčný molekulární chaos. Jeho nahodilost se řídí přísnými zákony. Ať se děje co děje, globální rovnováha nakonec nesmí být porušena.

6 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur:

7 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: rovnovážná střední hodnota, pomocí distribuční funkce

8 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: t Kappler počítal časovou střední hodnotu rovnovážná střední hodnota, pomocí distribuční funkce

9 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: t ERGODICKÝ PŘEDPOKLAD Kappler počítal časovou střední hodnotu rovnovážná střední hodnota, pomocí distribuční funkce

10 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: t ERGODICKÝ PŘEDPOKLAD Kappler počítal časovou střední hodnotu rovnovážná střední hodnota, pomocí distribuční funkce

11 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: t ERGODICKÝ PŘEDPOKLAD Kappler počítal časovou střední hodnotu rovnovážná střední hodnota, pomocí distribuční funkce

12 Bližší pohled na odvození z přednášky 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: t ERGODICKÝ PŘEDPOKLAD Kappler počítal časovou střední hodnotu rovnovážná střední hodnota, pomocí distribuční funkce

13 Ergodičnost a molekulární chaos 1.Zrcátko pokládáme za " N + 1" molekulu, která má také své Boltzmannovo rozdělení pravděpodobnosti 2.Použijeme ekvipartičního zákona na zobecněnou souřadnici (úhel ) 3.Je tu ovšem skrytá záměna středovacích procedur: t ERGODICKÁ VĚTA Kappler počítal časovou střední hodnotu rovnovážná, pomocí distribučnífunkce Molekulární chaos mění každý dynamický proces na stochastický Při opakování vznikají náhodné realisace procesu Nejčastěji se objeví "typické" realisace Pro ně systém bloudí všemi hodnotami uvažované dynamické veličiny a to tak, že u různých hodnot pobývá zhruba podle ter mické rozdělovací funkce Z chaotického chování se tak vynořuje pravidelnost ČASOVÉ STŘEDNÍ HODNOTY  TERMICKÉ STŘEDNÍ HODNOTY

14 Tlak v plynu a jeho fluktuace V elementární kinetické teorii se odvozuje výraz pro tlak plynu, který vede ke stavové rovnici. Na malou plošku působí tlaková síla, která však kolísá – podléhá fluktuacím. Ta bude hnací silou pro chaotický pohyb mesoskopických objektů.

15 Tři příklady mesoskopických systémů globální stupně volnosti translační mohou být exaktně odděleny od vnitřních SV rotační 1)Brownova částice volný translační (+ volný rotační) pohyb 2)pérové váhy mezipřípad: translační pohyb s vratnou silou 3)Kapplerovo zrcátko těžiště pevné, rotace okolo osy s vratnou silou

16 Naše volba pro konkrétnost představy globální stupně volnosti translační mohou být exaktně odděleny od vnitřních SV rotační 1)Brownova částice volný translační (+ volný rotační) pohyb 2)pérové váhy mezipřípad: translační pohyb s vratnou silou 3)Kapplerovo zrcátko těžiště pevné, rotace okolo osy s vratnou silou

17 Naše volba pro konkrétnost představy globální stupně volnosti translační mohou být exaktně odděleny od vnitřních SV rotační 1)Brownova částice volný translační pohyb v jedné dimensi 2)pérové váhy mezipřípad: translační pohyb s vratnou silou 3)Kapplerovo zrcátko těžiště pevné, rotace okolo osy s vratnou silou

18 Naše volba pro konkrétnost představy globální stupně volnosti translační mohou být exaktně odděleny od vnitřních SV rotační 1)Brownova částice volný translační pohyb v jedné dimensi 2)pérové váhy mezipřípad: translační pohyb s vratnou silou 3)Kapplerovo zrcátko těžiště pevné, rotace okolo osy s vratnou silou NÁHODNÉ SÍLY

19 Náhodná síla na destičku působená nárazy molekul plynu Odhady pro destičku 1mm x 1mm Vzduch za normálních podmínek 1atm, 0 C obdobně s druhé strany krátké silové impulsy Síla na stojící destičku Impuls síly za dobu makroskopicky krátkou, pro molekuly dlouhou

20 Náhodná síla na destičku působená nárazy molekul plynu Odhady pro destičku 1mm x 1mm Vzduch za normálních podmínek 1atm, 0 C obdobně s druhé strany krátké silové impulsy Síla na stojící destičku Impuls síly za dobu makroskopicky krátkou, pro molekuly dlouhou n = 2.69  mezimol. vzdálenost= 3.3 nm nárazů za sec.= 1.30  v = 493 m/s dusík v = 461 m/s kyslík

21 Náhodná síla na destičku působená nárazy molekul plynu Odhady pro destičku 1mm x 1mm Vzduch za normálních podmínek 1atm, 0 C obdobně s druhé strany krátké silové impulsy Síla na stojící destičku Impuls síly za dobu makroskopicky krátkou, pro molekuly dlouhou n = 2.69  mezimol. vzdálenost= 3.3 nm nárazů za sec.= 1.30  v = 493 m/s dusík v = 461 m/s kyslík  nárazů/  s

22 Náhodná síla na destičku působená nárazy molekul plynu Odhady pro destičku 1mm x 1mm Vzduch za normálních podmínek 1atm, 0 C obdobně s druhé strany krátké silové impulsy Síla na stojící destičku n = 2.69  mezimol. vzdálenost= 3.3 nm nárazů za sec.= 1.30  v = 493 m/s dusík v = 461 m/s kyslík  nárazů/  s Impuls síly za dobu makroskopicky krátkou, pro molekuly dlouhou

23 Náhodná síla na destičku působená nárazy molekul plynu Odhady pro destičku 1mm x 1mm Vzduch za normálních podmínek 1atm, 0 C obdobně s druhé strany krátké silové impulsy Síla na stojící destičku Střední síla na stojící destičku n = 2.69  mezimol. vzdálenost= 3.3 nm nárazů za sec.= 1.30  v = 493 m/s dusík v = 461 m/s kyslík  nárazů/  s Impuls síly za dobu makroskopicky krátkou, pro molekuly dlouhou

24 Náhodná síla na destičku působená nárazy molekul plynu Střední síla na pomalu se pohybující destičku v u brzdná síla

25 Náhodná síla na destičku působená nárazy molekul plynu v u brzdná síla  Střední síla na pomalu se pohybující destičku

26 Náhodná síla na destičku působená nárazy molekul plynu v u Objevila se disipativní síla úměrná rychlosti !! Je to důsledek molekulárního chaosu (termostat nereaguje na pohyb systému) brzdná síla  Střední síla na pomalu se pohybující destičku

27 Náhodná síla na destičku působená nárazy molekul plynu v u Objevila se disipativní síla úměrná rychlosti !! Je to důsledek molekulárního chaosu (termostat nereaguje na pohyb systému) Náhodná složka síly nulová střední síla bodová korelační funkce (bílý šum) PROČ brzdná síla  Střední síla na pomalu se pohybující destičku

28 Langevinova rovnice Jednoduchá myšlenka: Na mesoskopickou částici působí fluktuující síla ze strany molekul termostatu. Pro chaotický pohyb mesoskopických částic můžeme napsat pohybovou rovnici. Vypadá jako mikroskopická, ale není – náhodná Langevinova síla je zavedena fenomenologicky.

29 Langevinova rovnice Paul Langevin ( ) 1907 navrhl pohybovou rovnici pro částici propojenou s termostatem tření vtištěná síla (nenáhodná) NÁHODNÁ LANGEVINOVA SÍLA

30 Langevinova rovnice Paul Langevin ( ) 1907 navrhl pohybovou rovnici pro částici propojenou s termostatem tření vtištěná síla (nenáhodná) NÁHODNÁ LANGEVINOVA SÍLA Náhodná síla spolu s třením odrážejí účinek termostatu na systém

31 Langevinova rovnice Paul Langevin ( ) 1907 navrhl pohybovou rovnici pro částici propojenou s termostatem tření působící síla (nenáhodná) NÁHODNÁ LANGEVINOVA SÍLA Náhodná síla spolu s třením odrážejí účinek termostatu na systém DVĚ ZÁKLADNÍ STRATEGIE provedeme pro středování … LR jako stochastická DR 1D Brownovu částici simulace … řešení LR pro konkrétní lineární oscilátor realizaci Langevinovy síly „pérové váhy“ jako náhodného procesu simulace Kapplerových dat

32 Langevinova rovnice I. Původně použita na volnou Brownovu částici. Významné pokroky v pochopení. Difusní řešení je správné v limitě dlouhých časů. Pro krátké časy se projeví inerciální efekty

33 Langevinova rovnice pro 1D Brownovu částici tření NÁHODNÁ LANGEVINOV A SÍLA

34 Langevinova rovnice pro 1D Brownovu částici tření působící síla=0 (volná částice) Kdyby dostaneme NÁHODNÁ LANGEVINOV A SÍLA

35 Langevinova rovnice pro 1D Brownovu částici tření působící síla=0 (volná částice) Kdyby dostaneme NÁHODNÁ LANGEVINOV A SÍLA

36 Langevinova rovnice pro 1D Brownovu částici tření působící síla=0 (volná částice) Kdyby dostaneme ustálený stav NÁHODNÁ LANGEVINOV A SÍLA 

37 Langevinova rovnice pro 1D Brownovu částici tření působící síla=0 (volná částice) Kdyby dostaneme NÁHODNÁ LANGEVINOV A SÍLA

38 Langevinova rovnice pro 1D Brownovu částici tření působící síla=0 (volná částice) Kdyby dostaneme NÁHODNÁ LANGEVINOV A SÍLA dělíme m

39 Langevinova rovnice pro 1D Brownovu částici tření NÁHODNÁ LANGEVINOV A SÍLA dělíme m Původní Langevinův postup

40 Langevinova rovnice pro 1D Brownovu částici Původní Langevinův postup  Středovat … ale co

41 Langevinova rovnice pro 1D Brownovu částici Původní Langevinův postup  Středovat … ale co  Použít ekvipartičního teorému  Zbavit se náhodné síly !!!

42 Langevinova rovnice pro 1D Brownovu částici Původní Langevinův postup  Středovat … ale co  Použít ekvipartičního teorému  Zbavit se náhodné síly !!!

43 Langevinova rovnice pro 1D Brownovu částici Původní Langevinův postup  Středovat … ale co  Použít ekvipartičního teorému  Zbavit se náhodné síly !!!

44 Langevinova rovnice pro 1D Brownovu částici Původní Langevinův postup  Středovat … ale co  Obecné řešení LODR 1. řádu partikulární řešení + obecné řešení homogenní rovnice  Použít ekvipartičního teorému  Zbavit se náhodné síly !!!

45 Langevinova rovnice pro 1D Brownovu částici  Výsledná LODR 1. řádu (nenáhodná) Pokra č ování  Počáteční podmínka  Obecné řešení LODR 1. řádu partikulární řešení + obecné řešení homogenní rovnice

46 Langevinova rovnice pro 1D Brownovu částici  Výsledná LODR 1. řádu (nenáhodná) Pokra č ování  Počáteční podmínka  Obecné řešení LODR 1. řádu partikulární řešení + obecné řešení homogenní rovnice

47 Langevinova rovnice pro 1D Brownovu částici  Výsledná LODR 1. řádu (nenáhodná) Pokra č ování  Počáteční podmínka  Obecné řešení LODR 1. řádu partikulární řešení + obecné řešení homogenní rovnice  Poslední integrace

48 Langevinova rovnice pro 1D Brownovu částici VÝSLEDEK  Pro

49 Langevinova rovnice pro 1D Brownovu částici VÝSLEDEK  Pro

50 Langevinova rovnice pro 1D Brownovu částici difusní aproximace balistická limita úplné řešení

51 Langevinova rovnice II. Pro lineární oscilátor je řešení pomocí středovacích procedur také možné. My se soustředíme na přímou simulaci, abychom napodobili Kapplerovy časové průběhy.

52 Langevinova rovnice pro lineární oscilátor tření vratná síla NÁHODNÁ SÍLA Náhodná síla spolu s třením odrážejí účinek termostatu na systém tlumený lineární oscilátor parametry empiricky dostupné hnán vtištěnou silou síla náhodná, Gaussovský bílý šum středování středovaný pohyb je za chvíli utlumen

53 Langevinova rovnice pro lineární oscilátor – řešení LODR 2. řádu s pravou stranou obecné řešení= obecné ř. homog. rovnice+ partikulární řešení nehomog. rovnice sekulární rovnice kritická hodnota podtlumené kmitypřetlumené kmity

54 Kořeny charakteristické rovnice bezrozměrný parametr asymptoty

55 Langevinova rovnice – Greenova funkce pulsní excitace partikulární řešení nehomog. rovnice hledáme pomocí Greenovy funkce

56 Langevinova rovnice – Greenova funkce PAKpulsní excitace partikulární řešení nehomog. rovnice hledáme pomocí Greenovy funkce

57 Langevinova rovnice – Greenova funkce PAK Ověření: Proto pulsní excitace partikulární řešení nehomog. rovnice hledáme pomocí Greenovy funkce

58 Langevinova rovnice – Greenova funkce partikulární řešení nehomog. rovnice hledáme pomocí Greenovy funkce PAK Ověření: Proto akustická měření Greenovy funkce podle definice s kladívkem

59 Langevinova rovnice – stanovení Greenovy funkce hledáme Greenovu funkci A kausalita B C okrajové podmínky (sešití při rovných časech) dostaneme integrací po malém okolí bodu t = t´

60 Langevinova rovnice – stanovení Greenovy funkce hledáme Greenovu funkci A kausalita B C okrajové podmínky (sešití při rovných časech) dostaneme integrací po malém okolí bodu t = t´

61 Langevinova rovnice – náhodná síla Velikost náhodné síly konvenční, ale matoucí označení

62 Langevinova rovnice – náhodná síla Velikost náhodné síly naše konvenční označení

63 Langevinova rovnice – náhodná síla Velikost náhodné síly ???

64 Langevinova rovnice – náhodná síla Velikost náhodné síly Musíme se opřít o ekvipartiční teorém ???

65 Langevinova rovnice – náhodná síla Velikost náhodné síly Musíme se opřít o ekvipartiční teorém ???

66 Langevinova rovnice – náhodná síla Velikost náhodné síly Musíme se opřít o ekvipartiční teorém ??? Výsledek (připomíná Einsteinův vztah)

67 Langevinova rovnice – náhodná síla Velikost náhodné síly Musíme se opřít o ekvipartiční teorém Výsledek (připomíná Einsteinův vztah) ??? stejný jako pro volnou Brownovu částici

68 Numerická integrace formální řešení

69 Numerická integrace formální řešení rovnoměrné dělení intervalu času

70 Numerická integrace formální řešení rovnoměrné dělení intervalu času aproximace – věta o stř. hodnotě (Greenova funkce je plavná)

71 Numerická integrace formální řešení rovnoměrné dělení intervalu času aproximace – věta o stř. hodnotě (Greenova funkce je plavná) diskretizovaný tvar vhodný pro výpočet … rychlejší přímé num. řešení diferenciální rovnice

72 Numerická integrace diskrétní Gaussův náhodný proces

73 Numerická integrace diskrétní Gaussův náhodný proces rozdělení pravděpodobnosti

74 Numerická integrace diskrétní Gaussův náhodný proces generuji na počítači rozdělení pravděpodobnosti

75 Numerická integrace diskrétní Gaussův náhodný proces generuji na počítači rozdělení pravděpodobnosti pseudonáhodná čísla

76 Ukázka Kapplerových měření

77 Ukázka Kapplerových měření vysoký tlak, přetlumený oscilátor snížený tlak, podtlumený oscilátor

78 čas 2500 bodů rozmazáno s oknem

79 čas 2500 bodů rozmazáno s oknem

The end

81 Systematický popis termických fluktuací termické fluktuace || kvantové fluktuace současnost šum noise MAKROSKOPICKÁ APARATURA S T termostat makroskopický " nekonečný ".. mnoho nezávislých vnitřních stupňů volnosti systém mesoskopický interakce T -- S měřicí blok není součástí systému  "silné slabé"  molekulární chaos mikroskopické globální stupně volnosti

82 Termostat z ideálního plynu obecný tvar hamiltoniánu pro (téměř) ideální plyn srážky vedou k chaotisaci podmínky pro dobrý termostat z ideálního plynu doba chaotisace (srážková doba) doba termalisace (relaxační doba) charakteristická doba systému TERMOSTAT: definuje a fixuje teplotu je robustní, nedá se vychýlit je rychlý při návratu do rovnováhy S termostatem pracujeme tak, jakoby po dobu zkoumaného procesu setrval v rovnováze

83 Dynamický systém v rovnováze s termostatem Naše malé systémy si můžeme myslet jako "N + 1" molekulu, trochu sice větší, ale jinak zapadající do Boltzmannovy konstrukce kinetické teorie Předpokládáme totiž Škrtnutý člen vyvolá nevratnou dynamiku. Jsou dvě cesty: Počítáme střední hodnoty s rozdělovací funkcí Tímto vnucením rovnováhy jsme rovnocenně dosáhli nevratnosti. Začneme dynamické výpočty pro systém S pod dynamickým vlivem T. To je možné např. za použití Langevinovy rovnice ( … Příště)  "N + 1" molekul

84 Ekvipartiční teorém je obecně platný za následujících předpokladů: Systém je klasický ( fatálně důležité … viz Planckova funkce) Uvažovaný stupeň volnosti (p nebo q) vystupuje v celkovém hamiltoniánu jen jako aditivní kvadratická funkce, typicky Pak Tento výsledek pokrývá mimo jiné Kapplerovský výpočet. Na kinetické energii vůbec nezáleží, ani na rozdílném dynamickém chování pro různé podmínky (tla vzduchu v "termostatu")