VY_32_INOVACE_KGE.4.52 Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Tematický celek: Konstruktivní geometrie 4.ročníku Cílová skupina:

Slides:



Advertisements
Podobné prezentace
Vzájemná poloha přímky a kružnice (kruhu)
Advertisements

Rytzova konstrukce elipsy
VY_32_INOVACE_KGE.4.55 Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Tematický celek: Konstruktivní geometrie 4.ročníku Cílová skupina:
Kuželosečky Autor: Mgr. Alena Tichá.
Geometrie pro počítačovou grafiku
Osová afinita.
Gymnázium Jiřího Ortena KUTNÁ HORA
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tematický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Gymnázium Jiřího Ortena KUTNÁ HORA
Otočení roviny do průmětny
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Kuželosečky - opakování
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Lekce č. 5 Kosoúhlé promítání Axonometrie Průsečík přímky s rovinou.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tematický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Gymnázium Jiřího Ortena KUTNÁ HORA
* Středová souměrnost Matematika – 7. ročník *
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Rovnoběžné promítání. Nevlastní útvary. Osová afinita v rovině.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Gymnázium Jiřího Ortena KUTNÁ HORA
Jednoduché konstrukce (střed a osa úsečky, osa úhlu, tečna)
Autor: Mgr. Jana Pavlůsková Datum: květen 2012 Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Vytvořila Helena Černá
Střední škola stavební Jihlava
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV: VY_32_INOVACE_465_Konstrukce obdélníku AUTOR: Mgr. Martina Ringová ROČNÍK,
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
TECHNICKÉ KRESLENÍ Autor: Luboš Šlechta Datum: Třída: 8 - 9
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín HYPERBOLA 1.
Gymnázium Jiřího Ortena KUTNÁ HORA
afinita příbuznost, vzájemný vztah, blízkost
Kosoúhlé promítání.
4.OBECNÁ AXONOMETRIE A KOSOÚHLÉ PROMÍTÁNÍ
Elipsa VY_34_INOVACE Matematika, č.přílohy Autor: Mgr. Eva Hubáčková
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
ELIPSA vzniká jako řez kužele rovinou, která není rovnoběžná s podstavou kužele a zároveň podstavu neprotíná.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Tento Digitální učební materiál vznikl díky finanční podpoře EU- OP Vzdělávání pro konkurenceschopnost. Není –li uvedeno jinak, je tento materiál zpracován.
EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: 585.
VY_42_INOVACE_417_OSOVÁ SOUMĚRNOST 1
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
ELIPSA Elipsa je množina bodů v rovině, které mají od dvou daných bodů – ohnisek ( F1 a F2) stálý součet vzdáleností, větší než vzdálenost ohnisek. Vzdálenosti.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Přednáška č. 4 Kosoúhlé promítání Opakování Mongeova promítání.
Gymnázium Jiřího Ortena KUTNÁ HORA
* Thaletova věta Matematika – 8. ročník *
Čtyřúhelníky a rovnoběžníky
Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Elipsa 1.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tematická oblast: Rovnice, nerovnice, výrazy Cílová skupina: 1. ročník (kvinta) gymnázia Oblast.
Gymnázium Jiřího Ortena KUTNÁ HORA
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO:
Parabola VY_34_INOVACE Matematika, č.přílohy Autor: Mgr. Eva Hubáčková
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU: CZ.1.07/1.4.00/ AUTOR: Mgr. Marie.
Analytická geometrie kvadratických útvarů
Analytická geometrie kvadratických útvarů
Transkript prezentace:

VY_32_INOVACE_KGE.4.52 Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Tematický celek: Konstruktivní geometrie 4.ročníku Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím ICT Autor: Mgr. Jitka Křičková Téma: Elipsa – 2. část Datum vytvoření: Přílohy:

Anotace 2 Práce je využita pro jednu vyučovací hodinu Definice elipsy – opakování Rytzova konstrukce elipsy Trojúhelníková konstrukce elipsy VY_32_INOVACE_KGE.4.52

3 Ohniska F 1,F 2 hlavní vrcholy A, B vedlejší vrcholy C, D. Střed elipsy S, leží ve středu úsečky F 1 F 2 hlavní osa elipsy – AB vedlejší osa elipsy – SC hlavní poloosa – úsečka AS a BS vedlejší poloosa - úsečka CS a DS VY_32_INOVACE_KGE.4.52

4 Rytzova konstrukce elipsy: Je dána dvojice sdružených průměrů elipsy → mají se najít hlavní a vedlejší vrcholy VY_32_INOVACE_KGE.4.52 Sdružené průměry kružnice a elipsy dva průměry se nazývají sdružené, právě když tečny v krajních bodech jednoho průměru jsou rovnoběžné s druhým průměrem sdruženost průměrů se rovnoběžným promítáním a tedy i osovou afinitou zachovává u kružnice jsou každé dva sdružené průměry současně navzájem kolmé u elipsy existuje jediná dvojice sdružených a současně kolmých průměrů - na hlavní a vedlejší ose

Postup Rytzovy konstrukce:VY_32_INOVACE_KGE.4.52

Trojúhelníková konstrukce elipsy VY_32_INOVACE_KGE.4.52

Byly použity vlastní materiály VY_32_INOVACE_KGE.4.52