Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Vlastnosti trojúhelníku
Advertisements

Užití poměru (graficky)
Konstrukce lichoběžníku
Konstrukce trojúhelníku
Užití Thaletovy kružnice
Konstrukce trojúhelníku
1. Bodem, který leží na kružnici 2. Bodem, který leží mimo kružnici
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Konstrukce lichoběžníku 1
Konstrukce trojúhelníku
Sestrojení úhlu o velikosti 60° pomocí kružítka.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Základní konstrukce Rovnoběžky.
Základní konstrukce Kolmice.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce lichoběžníku
Lichoběžník Obsah lichoběžníku.
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Konstrukce mnohoúhelníku
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Užití Thaletovy kružnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Užití Thaletovy kružnice
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Známe-li délku úhlopříčky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Obdélník (známe-li délky jeho stran)
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Konstrukce trojúhelníku
Konstrukce lichoběžníku
Konstrukce rovnoběžníku
1. Bodem, který leží na kružnici 2. Bodem, který leží mimo kružnici
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Konstrukce trojúhelníku
Čtverec (známe-li délku jeho strany)
Konstrukce trojúhelníku
Konstrukce rovnoběžníku
Konstrukce kosočtverce
Konstrukce rovnoběžníku
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce rovnoběžníku Známe-li dvě strany a výšku k jedné z nich

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. a  c ; AB  CD b  d ; BC  DA Rovnoběžník – strany rovnoběžníku Rovnoběžník (kosodélník) je čtyřúhelník, který má rovnoběžné protilehlé strany. Zopakujeme si základní vlastnosti, které nám často pomohou při pozdějších konstrukcích.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. b = d ;  BC  =  DA  a = c ;  AB  =  CD  Rovnoběžník – strany rovnoběžníku Protější strany rovnoběžníku mají stejnou délku.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.  =  ;   ABC  =   CDA   =  ;   DAB  =   BCD  Rovnoběžník – vnitřní úhly rovnoběžníku Protější úhly rovnoběžníku mají stejnou velikost.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnoběžník – výšky rovnoběžníku Výška rovnoběžníku je kolmá vzdálenost protilehlých rovnoběžných stran. Jelikož rovnoběžník je tvořen dvěma dvojicemi protilehlých stran, existují i dvě různé výšky rovnoběžníku v a a v b.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Dokonce i mimo rovnoběžník. V takovém případě je ovšem potřeba strany rovnoběžníku nejdříve patřičně protáhnout. Rovnoběžník – výšky rovnoběžníku Výška je kolmá vzdálenost stran. Není tedy nijak vázána na vrcholy rovnoběžníku, a tudíž může být kdekoliv, kde splňuje podmínku kolmosti na protilehlé strany. Jelikož výška je kolmá vzdálenost dvou protilehlých stran, tak i její označení může být dvojí. V našem případě je to kolmá vzdálenost stran a a c, tudíž v a nebo v c.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobně jako při konstrukcích trojúhelníku s výškou v zadání, tak i zde nám při konstrukci pomůže, když ve vzdálenosti výšky sestrojíme rovnoběžku s danou příslušnou stranou a. A nyní již přikročíme ke konstrukci. Sestrojte rovnoběžník ABCD, ve kterém a = 3 cm, b = 4,5 cm, v a = 4 cm. a

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Začneme stranou a, pokračovat budeme výškou v a (dostaneme rovnoběžku s a) a jako poslední ze zadání využijeme stranu b (dostaneme kružnici). Náčrt a rozbor Následuje sestrojení bodu D pomocí známé vzdálenosti od bodu C (c=a). q p l mn Ale pozor! Jistě jste si všimli, že kružnice l protíná přímku p ve dvou bodech. To znamená, že příklad bude mít dvě řešení v dané polorovině. C´D´

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 1. AB;  AB  =a= 3 cm Zápis a konstrukce 3. l; l(B; b= 4,5 cm) 4. C 1, C 2 ; C 1, C 2  p  l 5. m; m(C 1 ; a=c= 3 cm) 6. D 1 ; D 1  p  m 7. n; n(C 2 ; a=c= 3 cm) A B 2. p; p  AB; |p,AB|=v a = 4 cm p C1C1 l C2C2 m D1D1 n 9. Rovnoběžníky ABC 1 D 1, ABC 2 D 2 8. D 2 ; D 2  p  m D2D2

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výsledný rovnoběžník Úloha má jedno řešení. (v polorovině určené úsečkou AB a body C a D) Konstrukci proměříme, zda odpovídá zadání a trojúhelník vytáhneme silněji. A takto vypadá výsledek.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 1 Sestrojte rovnoběžník ABCD, jestliže: b= 5 cm,  = 60°, v b = 5 cm (Rada: Pootočte si rovnoběžník.)

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 2 Sestrojte rovnoběžník ABCD, jestliže: b = 7 cm,  = 130°, v d = 4 cm (Rada: v d =v b )

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 3 Sestrojte rovnoběžník ABCD, jestliže: a = 6 cm, d = 45 mm, v a = 30 mm (Rada: Pozor na jednotky!)

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přeji Vám mnoho přesnosti při rýsování!