Nezávislé pokusy
Nezávislé pokusy Příklad 1: Vyjádřete pravděpodobnosti možných výsledků při 3 hodech mincí. Ω = {LLL, LLR, LRL, LRR, RLL, RLR, RRL, RRR} P(LLL) = P(LLR) = . . . = P(RRR)=1/8 P(LLL) = 1/8 = ½ ∙ ½ ∙ ½ = P(L) ∙ P(L) ∙ P(L) P(LLR) = 1/8 = ½ ∙ ½ ∙ ½ = P(L) ∙ P(L) ∙ P(R) . . .
Nezávislé pokusy Nechť je sdružený náhodný pokus tvořen n dílčími pokusy. Řekneme, že dílčí náhodné pokusy jsou nezávislé, jestliže pro každý výsledek (1, 2, …, n) sdruženého pokusu platí P(1, 2, …, n) = P(1)∙P(2)∙...∙P(n), kde 1, 2, …, n jsou výsledky dílčích pokusů.
Nezávislé pokusy Příklad 2: Určete pravděpodobnost výhry ve Sportce v I. pořadí (uhodneme všech 6 čísel ze 6 tažených) a porovnejte tuto pravděpodobnost s pravděpodobností padnutí n líců při n hodech mincí (tj. určete pro jaký počet mincí jsou tyto pravděpodobnosti přibližně stejné).
Nezávislé pokusy Příklad 3: Představme si, že budeme ve Sportce sázet každý týden jednu sázenku. S jakou pravděpodobností získáme během jednoho roku alespoň jednou výhru v V. pořadí? (Výhru v V. pořadí získáme, uhodneme-li 3 čísla ze 6 tažených.)
Bernoulliovo schéma Uvažujeme náhodný pokus, při kterém je pravděpodobnost, že nastane sledovaný jev rovna p. Pravděpodobnost, že při n-násobném nezávislém opakování tohoto náhodného pokusu nastane sledovaný jev k-krát je k = 0, 1, 2, …, n
Bernoulliovo schéma Příklad 4: Pravděpodobnost narození dívky je 0,48. Určíme jaká je pravděpodobnost, že v rodině se čtyřmi dětmi je jedna dívka a tři chlapci. Ze zadání je n = 4, k = 1, p = 0,48. Po dosazení dostaneme
Bernoulliovo schéma Podobně je možné spočítat pravděpodobnost i pro jiné podoby rodin se čtyřmi dětmi: k – počet dívek 1 2 3 4 P(k) 0,073 = 7,3% 0,270 = 27,0% 0,374 = 37,4% 0,230 = 23,0% 0,053 = 5,3%
Bernoulliovo schéma Příklad 5: Jaká je pravděpodobnost, že při 10 hodech kostkou padne šestka právě třikrát; nejvýše jednou; alespoň jednou?
Bernoulliovo schéma Příklad 6: Písemný test je tvořen 12 otázkami. Každá z otázek má 5 možných odpovědí, z nichž právě jedna je správná. Pro úspěšné zvládnutí testu je potřeba správně zodpovědět alespoň 8 otázek. Student je na test naprosto nepřipraven, odpovědi volí náhodně. Jaká je pravděpodobnost, že se mu podaří test úspěšně zvládnout?
Bernoulliovo schéma k – počet správných odpovědí P(8) + P(9) + P(10) + P(11) + P(12) = 0,00058 k 8 9 10 11 12 P(k) 0,00052 0,000058 0,000004 0,0000002 0,000000004