Exponenciální funkce Körtvelyová Adéla G8..

Slides:



Advertisements
Podobné prezentace
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Didaktika matematiky Akademický rok: 2003 – 2004 Zpracoval: Jan.
Advertisements

Pojem FUNKCE v matematice
Exponenciální funkce Exponenciální funkcí o základu a nazýváme každou část funkce, která je dána rovnicí: Dostupné z Metodického portálu ISSN: 1802–4785,
* Lineární funkce Matematika – 9. ročník *
F U N K C E III Funkce 20 Goniometrické funkce s absolutní hodnotou
Lineární funkce - příklady
Funkce.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
F U N K C E II Funkce 5 Mocninná funkce 3 Čihák Plzeň 2013, 2014.
Mgr. Vladimír Wasyliw - s využitím práce Mgr. Petra Šímy – SŠS Jihlava
Základy infinitezimálního počtu
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Funkce Vlastnosti funkcí.
Matematika Téma č. 5 Funkce Základní pojmy /main terms/основные термины  Reálná funkce f jedné reálné promĕnné x je množina f uspořádaných dvojic.
Funkce.
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík
5. Přednáška funkce BRVKA Johann P.G.L. Dirichlet (1805 – 1859)
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_94.
Elementární funkce Základními elementárními funkcemi se nazývají funkce mocninné exponenciální logaritmické goniometrické cyklometrické Elementárními funkcemi.
MATEMATIKA I.
Kvadratická funkce Lukáš Zlámal.
2.1.2 Graf kvadratické funkce
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Exponenciální a logaritmické funkce a rovnice
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B09 AutorRNDr. Marcela Kepáková Období vytvořeníProsinec.
Kvadratická funkce. Co je to funkce Každému prvku x z definičního oboru je přiřazeno právě jedno číslo y z oboru hodnot x je nezávisle proměnná y je závisle.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
VLASTNOSTI FUNKCÍ Příklady.
Lineární lomená funkce
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
vlastnosti lineární funkce
Logaritmické funkce Michal Vlček T4.C.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B07 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Čihák Plzeň 2013, 2014 Funkce 4 Mocninná funkce 2.
Funkce a jejich vlastnosti
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
MIROSLAV KUČERA Úvodní informace Matematika B 2
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A10 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
PRŮBĚH FUNKCE.
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A11 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B04 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Reálná funkce reálné proměnné Přednáška č.1. Požadavky ke zkoušce Na Tamtéž studijní literatura.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Lineární funkce Rozdělení lineárních funkcí Popis jednotlivých funkcí.
Elektronické učební materiály - II. stupeň Matematika Autor: Mgr. Radek Martinák FUNKCE – lineární Co znamená lineární? Jak souvisí lineární funkce s přímou.
FUNKCE TANGENS A KOTANGENS. Definice funkcí tangens a kotangens Funkce tangens a kotangens 2 Funkcí tangens nazýváme funkci, která je dána rovnicí Funkcí.
Matematický milionář Foto: autor Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Funkce a jejich vlastnosti
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Cvičení V této kapitole můžete procvičit probrané téma. Jednotlivá cvičení obsahují správné řešení s postupem. Po zobrazení zadání se dalším(dalšími) kliknutím(kliknutími)
Graf a vlastnosti funkce
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
Exponenciální a logaritmické funkce a rovnice
Matematika Funkce - opakování
Lineární funkce a její vlastnosti
Funkce a jejich vlastnosti
MATEMATIKA 1: FUNKCE, ROVNICE A NEROVNICE
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Transkript prezentace:

Exponenciální funkce Körtvelyová Adéla G8.

Předpis Funkci ve tvaru f : y = ax, kde a > 0 a různé od 1 nazýváme exponenciální funkcí o základu a. Definičním oborem je celý obor reálných čísel: D(f) = (−∞;+∞). Oborem hodnot je interval: H(f) = (0;+∞). Exponenciální rovnice je rovnice, u které se proměnná vyskytuje v exponentu. Při řešení těchto rovnic využíváme pravidel pro počítání s mocninami a často se řeší zlogaritmováním.

Vlastnosti je prostá není sudá ani lichá je na celém definičním oboru spojitá je omezená zdola nulou, není omezená shora nemá v žádném bodě ani maximum, ani minimum pro a > 1 je rostoucí pro 0 < a < 1 je klesající je na celém definičním oboru konvexní (nezávisle na velikosti základu a) je inverzní k funkci logaritmické grafem je exponenciála

Grafy Grafem exponenciální funkce je exponenciální křivka neboli exponenciála. Tvar exponenciály závisí na hodnotě základu a.

Ukázkový příklad Sestrojte graf následující exponenciální funkce: y = 2x+2 - 2 1) Do soustavy souřadnic umístíme řídicí přímky dané křivky. 2) Vypočítáme průsečíky grafu s osami. 3) Vyjdeme ze základního grafu exponenciální funkce y = 2x a umístíme jej do soustavy souřadnic.

Řešení ukázkového příkladu 1) Řídicí přímky dané křivky ▪ a1: x = -2 ▪ a2: y = -2 2) Průsečíky s osami ▪ průsečík grafu s osou x: y = 0 2x+2 = 2 2x+2 = 21 x + 2 = 1 x = -1 Px [-1;0] ▪ průsečík grafu s osou y: x = 0 y = 22 – 2 y = 2 Py [0;2] 3) Graf ▪ Využijeme základní graf y = 2x. ▪ Křivka bude procházet body Px [-1;0] a Py [0;2]

Sestrojte graf následující exponenciální funkce: Příklad Sestrojte graf následující exponenciální funkce: y = 3x - 5

Řešení příkladu 1) Řídicí přímky dané křivky ▪ a1: x = 0 ▪ a2: y = -5 2) Průsečíky s osami ▪ průsečík grafu s osou x: y = 0 3x = 5 log 3x = log 5 x log 3 = log 5 x = 1,465 Px [1,465;0] ▪ průsečík grafu s osou y: x = 0 y = 30 – 5 y = -4 Py [0;-4] 3) Graf ▪ Využijeme základní graf y = 3x. ▪ Křivka bude procházet body Px [1,465;0] a Py [0;-4]