JADERNÁ ELEKTRÁRNA.

Slides:



Advertisements
Podobné prezentace
Princip a popis jaderných reaktoru
Advertisements

ELEKTRÁRNY.
O.Novotný R.Říhová T.Bartůšková M.Richterová
2 Výroba elektrické energie
Jaderná energetika.
Jaderný reaktor a jaderná elektrárna
Elektrárny Jaderné elektrárny.
Digitální učební materiál
Jaderný reaktor Aktivní zóna – část reaktoru, kde probíhá řetězová reakce. Jako palivo slouží tyče s uranovými tabletami Moderátor – slouží jako tzv. zpomalovač.
Anna Šimonová. Těžba uhlí již od r Vyrábí zhruba polovinu celkové elektrické energie na území ČR Staré technologie – vysoké procento znečišťování.
Jaderná energie.
Jaderná energie Výroba paliv a energie.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Tento materiál byl vytvořen jako učební dokument projektu inovace výuky v rámci OP Vzdělávání pro konkurenceschopnost VY_32_INOVACE_D3 – 03.
10) Základní schéma v ČR používaných typů JEZ
Jaderná energie.
Atomové elektrárny.
Jaderná energie.
Jedna ze dvou jaderných elektráren v ČR - Temelín
ZKOUMÁ VYUŽITÍ ENERGIE ATOMŮ
Elektrárny.
Jaderné elektrárny Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí Zeměpis – 1. ročník.
Jaderné elektrárny.
Jaderná energie Martin Balouch, Adam Vajdík.
ZŠ Rajhrad Ing. Radek Pavela
JADERNÁ ELEKTRÁRNA.
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/ je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Výukový.
Jaderný reaktor Jedná se o tlakovou nádobu ve které probíhá řízená štěpná reakce. Nejběžnější je tlakovodní reaktor označovaný PWR. Palivem je UO2 obohacený.
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST 2011
Škola: Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_FYZIKA1_10 Tematická.
Atomová elektrárna.
Radioaktivita.
Pavel Vlček ZŠ Jenišovice VY_32_INOVACE_352
Fy – kvarta Yveta Ančincová
Jaderné Elektrárny.
Jedna ze dvou jaderných elektráren v ČR - Temelín
Elektronická učebnice - II
VY_32_INOVACE_16 - JADERNÁ ENERGIE - VYUŽITÍ
Typy jaderných reakcí.
Jaderná Elektrárna.
Atomy Každé těleso je tvořeno malými, které se nedají dělit, nazýváme je atomy Látky jednoduché nazíváme prvky Látky složené nazýváme sloučeniny Při spojování.
Simulace provozu JE s reaktorem VVER 1000 Normální provoz i havarijní stavy Zpracovali: M. Kuna, P. Baxant, J. Fumfera.
ŠTĚPENÍ JADER URANU anebo O jaderném reaktoru PaedDr. Jozef Beňuška
Neseďte u toho komplu tolik !
Výroba elektrické energie
Využití energie Slunce
Jak se trvale získává jaderná energie
Temelín.
Didaktický učební materiál pro ZŠ INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Autor:Bc. Michaela Minaříková Vytvořeno:květen 2012 Určeno:9. ročník.
Jaderná elektrárna.
Jaderné reaktory Pavel Tvrdík, Oktáva Jaderný reaktor Jaderný reaktor je zařízení, ve kterém probíhá řetězová jaderná reakce, kterou lze kontrolovat.
Elektrárny Zbožíznalství 1. ročník Elektrárny - rozeznáváme: 1. tepelné elektrárny 2. vodní elektrárny 3. jaderné elektrárny.
Název školy: Základní škola Městec Králové Autor: Mgr.Jiří Macháček Název: VY_32_INOVACE_35_F9 Číslo projektu: CZ.1.07/1.4.00/ Téma: Jaderná elektrárna.
1 JE – jaderne elektrarny JE – Jaderné elektrárny 2 1 DDZ, rozdělení elektráren, Princip výroby elektřiny, 2 Objev elektronu, Historie JE.
Jaderná energetika. Struktura prezentace otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
Název školy:Gymnázium, Roudnice nad Labem, Havlíčkova 175, příspěvková organizace Název projektu:Moderní škola Registrační číslo projektu:CZ.1.07/1.5.00/
 Anotace: Materiál je určen pro žáky 9. ročníku Slouží k naučení nového učiva. Žák používá znalosti z chemie. Žák vyjmenuje základní části jaderné elektrárny,
Název šablony: ICT2 – Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací oblast/oblast dle RVP: Člověk a příroda Okruh dle RVP: Fyzika Tematická.
Jaderná ELEKTRÁRNA.
Název školy: ZŠ Klášterec nad Ohří, Krátká 676 Autor: Mgr
Simulace řízení jaderné elektrárny typu ABWR
Jaderné reakce Při jaderných reakcích se mohou přeměňovat jádra jednoho nuklidu na jádra jiných nuklidů. Přitom zůstává elektrický náboj i počet nukleonů.
JADERNÁ ELEKTRÁRNA Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Josef Ledvoň. Dostupné z Metodického portálu ISSN:
Jaderná energetika, souhrnné otázky a úkoly
Jaderná energetika, souhrnné otázky a úkoly
Fyzika – Jaderná elektrárna
ELEKTRÁRNY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Jarmila Hájková. Dostupné z Metodického portálu ISSN
Elektřina VY_32_INOVACE_05-36 Ročník: IX. r. Vzdělávací oblast:
NÁZEV ŠKOLY: ZÁKLADNÍ ŠKOLA TIŠICE, okres MĚLNÍK AUTOR:
Transkript prezentace:

JADERNÁ ELEKTRÁRNA

Podíl elektráren na výrobě elektřiny v ČR

Elektrárny v ČR jaderné uhelné vodní větrné sluneční

Jak funguje jaderná elektrárna

Jak funguje jaderná elektrárna Jaderný reaktor Energie se získává štěpením jader 235U neutrony v jaderném reaktoru. Palivo ho obsahuje asi 4%. Uran je zde ve formě oxidu uraničitého UO2 a je v reaktoru umístěn v palivových článcích. Každý článek je tvořen palivovými proutky, ve kterých je palivo hermeticky uzavřeno. Mimo to jsou v reaktoru ještě regulační kazety s palivovou částí. Teplo, které v aktivní zóně reaktoru vzniká štěpením jader uranu, je odváděno chladicí demineralizovanou vodou, která zároveň slouží jako moderátor neutronů. Příměs kyseliny borité (max. 12 g na litr vody) navíc přispívá i k regulaci výkonu reaktoru. Palivový cyklus (doba, za kterou se všechny kazety s palivem postupně vymění) je 5 let.

Jaderný reaktor tlaková nádoba je ocelová řídící tyče jsou z materiálu pohlcujícího neutrony a mohou se zasunovat nebo vysunovat chladicí voda obsahuje příměs kyseliny borité, která rovněž pohlcuje neutrony

Jaderná reakce 235U + n  2-3n + Pu + další nestabilní štěpné produkty

Primární okruh odvádí energii z reaktoru a přeměňuje ji v tepelnou energii využitelnou v parní turbíně ohřívá vodu v parogenerátoru, přeměňuje ji na páru a předává tak teplo sekundárnímu okruhu

Sekundární okruh sekundárním okruhem v jaderné elektrárně je nazýván systém zařízení, který umožňuje přeměnit tepelnou energii páry v mechanickou energii rotoru parní turbíny rotor turbíny je spojen s rotorem generátoru, kde se transformuje kinetická energie rotoru na energii elektrickou.

Terciární okruh Úkolem terciálního okruhu je vytvořit v kondenzátoru co největší turbínou využitelný podtlak, aby účinnost turbíny byla co nejvyšší. Základními zařízeními tohoto okruhu jsou: chladící věže oběhová čerpadla potrubí a kanály chladící vody

Chladící věže slouží k zajištění dostatečného tahu chladícího vzduchu pro chlazení chladící vody konstrukční vestavby zajišťující rozstřik chladící vody pro lepší účinnost ochlazování. část chladící vody se odpařuje. Ve spodní části věže je kruhový bazén, v němž se ochlazená voda shromažďuje a čerpadly chladící vody je dopravována zpět do kondenzátoru turbín.

Co s „vyhořelým“ palivem i po vyjmutí paliva z reaktoru dochází k jaderným přeměnám a k uvolňování gama záření, neutronů a tepla, které musí být odváděno

Mokrý mezisklad Z reaktoru (1) se vyhořelé palivo strojově zaváží do tzv. bazénu vyhořelého paliva (2), kde leží asi 3-4 roky, později do kontejnerů Castor (3), v nichž je neprodyšně uzavřeno Kapacita jednoho kontejneru (10 tun použitého jaderného paliva) odpovídá téměř roční produkci jednoho reaktoru VVER 440

Suchý mezisklad po železnici se pak kontejnery dopravují do suchých meziskladů, které mohou být povrchové nebo podpovrchové. Palivo zde leží 40-60 let

Definitivní řešení Z meziskladů putuje vyhořelé palivo většinou do hlubinných úložišť, kde je zabezpečeno na tisíce let, než jeho radioaktivita klesne na normální úroveň. Druhá možnost, přepracování a znovuvyužití je zatím příliš drahá a technologicky náročná.

Výhody a nevýhody jaderných elektráren Obsah uranu v rudách se pohybuje v řádu pouhých desetin procent (odpad při zpracování) Nebezpečí jaderného výbuchu Nebezpečný odpad Malé množství paliva Malé množství odpadu Mnohem menší znečištění prostředí (včetně kontaminace radioaktivními látkami) k výrobě 1 kg paliva je potřeba 2-4 tuny uranové rudy