Sloučeniny Chemická vazba Názvosloví a tvorba vzorců Molární hmotnost a koncentrace
Sloučeniny Chemicky čistá látka, tvořená molekulami stejného druhu, které jsou tvořeny dvěma a více prvky. Molekuly stejného druhu: Stejné prvky Stejný počet jednotlivých atomů Stejné uspořádání v prostoru Jednotlivé atomy jsou v molekulách poutány chemickou vazbou
Chemická vazba Soudržná síla působící mezi jednotlivými atomy (nebo ionty) v molekulách, krystalech, etc. Je zprostředkovaná valenčními elektrony vázaných atomů (iontů), takže její charakter závisí především na uspořádání valenčních elektronů těchto atomů (iontů)
Kdy vzniká chemická vazba? 1) Atomy se k sobě musí přiblížit tak, aby mohlo dojít k překrytí jejich valenčních orbitalů Atomy musí mít dostatečnou energii, aby mohlo dojít ke vzniku vazby Počet, energie a prostorové uspořádání valenčních elektronů musí umožnit vznik vazebných elektronových párů Při vzniku vazby musí dojít k uvolnění energie vznikající uskupení musí být energeticky chudší než výchozí částice
Podstata chemické vazby Překrytí valenčních orbitalů → vznik molekulových orbitalů Vytvoření elektronových vazebných párů: Elektrony patří současně oběma atomům Nelze rozlišit, který elektron patřil původně kterému atomu Proč se tvoří chemické vazby? Isolované atomy nemají (s výjimkou vzácných plynů) zaplněnou valenční vrstvu → energeticky náročné a nestabilní Chemická vazba má vést k úplnému zaplnění valenčních orbitalů → energeticky výhodný a stabilní stav Cíl: dosáhnout elektronové konfigurace nejbližšího vzácného plynu → zcela zaplněné valenční vrstvy energeticky výhodného stavu
Energetika kovalentní vazby Pokud se dva atomy k sobě přibližují a při tom se jejich valenční vrstvy postupně překrývají, dochází k uvolňování energie Maximální energie (vazebná, disociační energie) se uvolní, když atomy dosáhnou určité vzdálenosti – rovnovážné vzdálenosti, která odpovídá vazebné délce Pokud se atomy přiblíží ještě více, dojde k postupně rostoucí repulsi – odpuzování z důvodu přílišné blízkosti kladně nabitých jader
Znázorňování vzniku chemické vazby Pomocí rámečků Pomocí vzorců Stechiometrický vzorec Sumární vzorec Funkční vzorec Strukturní vzorec Konstituční vzorec Geometrický vzorec Konfigurační vzorec Konformační vzorec
Vaznost prvku Počet kovalentních vazeb, které atom daného prvku vytváří se nazývá vaznost prvku H – jednovazný Prvky 2. periody – maximálně čtyřvazné (snaha o dosažení elektronového oktetu – mimořádně energeticky stabilní stav) Prvky dalších period – maximální počet vazeb dán celkovou schopností přijmout elektrony do valenční sféry (tj. i včetně možných d-orbitalů), přesto i zde častý oktet
Vazebná energie Energie, která se uvolní, když se vytvoří jeden mol příslušných vazeb Energie, která je potřebná k rozštěpení jednoho molu příslušných vazeb (disociační energie) J.mol-1
Druhy vazeb Podle násobnosti: Podle výskytu vazebných elektronů: Jednoduchá Dvojná Trojná Podle výskytu vazebných elektronů: Sigma – s: elektrony se nacházejí (tj. elektronová hustota je největší) na spojnici jader, tvoří se jako první Pí – p: elektrony se nacházejí (tj. elektronová hustota je největší) nad a pod spojnicí jader, vyskytuje se v násobných vazbách jako doplněk k vazbě s
Základní a valenční stav atomu, hybridisace Základní stav atomu je energeticky nejchudší, v němž se všechny elektrony nachází v orbitalech s nejnižší možnou energií → ZS je dán takovou elektronovou konfigurací, která vyplývá z výstavbových pravidel Pro vznik chemické vazby je však toto uspořádání často nevyhovující → je třeba elektrony přeskupit a některé z nich přesunout do energeticky bohatších orbitalů Hybridisace: děj, při kterém dochází k energetickému splývání orbitalů a přesunu elektronů v rámci nově vznikajícího hybridního orbitalu. Současně dochází k novému prostorovému uspořádání Valenční stav: energeticky bohatý (excitovaný) stav atomu, který vzniká hybridisací
Druhy hybridisace Druhy hybridisace se určují podle počtu a druhu splynutých atomových orbitalů Druh hybridisace určuje i nové prostorové uspořádání molekulových orbitalů Do hybridních orbitalů se započítávájí orbitaly podílející se na vazbě s a obsahující volné elektrony a nevazebné elektronové páry Do hybridních orbitalů se nezapočítávají orbitaly tvořící vazby p sp – přímka sp2 – trojúhelník sp3 – tetraedr sp3d – trojboká bipyramida sp3d2 – čtyřboká bipyramida
VSEPR VSEPR = Valence-shell electron-pair repulsion O základním tvaru molekuly rozhoduje číslo udávající součet počtu vazebných elektronových párů sigma a počtu nevazebných elektronových párů, umístěných na centrálním atomu molekuly. Vazebné elektronové páry sigma a nevazebné elektronové páry (n) se rozmisťují do prostoru tak, aby si co nejméně překážely, tudíž tak, aby měly co nejnižší energii.
Theorie molekulových orbitalů Chemickou vazbu je možné popisovat i theorií molekulových orbitalů (MO) Vznik vazby je popisován matematickou lineární kombinací vlnových funkcí atomových orbitalů (AO) za vniku MO. Vznikající orbitaly jsou příslušné celé molekule, nikoli jen jednomu atomu. MO popisuje pravděpodobnost výskytu elektronu v molekule Lineární kombinace: Součet – vznik vazebného orbitalu Rozdíl – vznik antivazebného orbitalu Vznik molekulového s – orbitalu
Theorie molekulových orbitalů HOMO = nejvyšší obsazený MO LUMO = nejnižší neobsazený MO Vznik molekulového p - orbitalu
Atomová elektronegativita a druhy vazeb „Atomová elektronegativita (zjednodušeně elektronegativita) X je schopnost vázaného atomu přitahovat vazebný elektronový pár.“ Podle hodnoty rozdílu elektronegativit (DX) vázaných atomů rozlišujeme vazby: Kovalentní Nepolární DX = 0,0 – 0,4 – elektrony jsou sdíleny rovnoměrně, elektronová hustota zhruba uprostřed mezi vázanými atomy. Nepolární látky obsahují buď jen nepolární vazby, nebo vzájemně kompensované vazby polární. Polární DX = 0,4 – 1,7 – elektrony jsou přitahovány blíže k jednomu z partnerů. Elektronová hustota největší u elektronegativnějšího atomu. Vzniká parciální kladný (d+) a záporný (d-) náboj. Polární látky obsahují alespoň jednu nekompensovanou polární vazbu. Iontové DX > 1.7 – elektrony jsou zcela přetaženy k elektronegativnějšímu atomu, dochází k rozdělení náboje a vzniku iontů. Vyskytuje se v pevných látkách (soli) a jejich taveninách.
Vlastnosti nepolárních, polárních a iontových sloučenin Nepolární sloučeniny Polární sloučeniny Iontové sloučeniny Vazby Buď jen nepolární, nebo i kompensované polární Alespoň jedna nekompensovaná polární Alespoň jedna iontová Forma/ skupenství Molekuly/g,l,s Nadmolekulární útvary/krystalické s Bod tání Obvykle velmi nízký, krystalické látky extrémně vysoký Středně vysoký Extrémně vysoký Bod varu Obvykle velmi nízký Rozpustnost Výborná v nepolárních rozpouštědlech, špatná ve vodě Výborná ve vodě a jiných polárních rozpouštědlech Výborná ve vodě Vodivost Špatná Výborná v roztoku
Kovová vazba Vyskytuje se mezi atomy kovů v pevném skupenství. Vzniká mezi velkými soubory stejných (i nestejných) atomů, jejichž elektronegativity jsou poměrně nízké a vzájemně se příliš neliší. Představa kladně nabitých atomů, které tvoří mřížku a společně sdílejí valenční elektrony ve formě elektronového plynu. Kovová vazba je zodpovědná za vlastnosti kovů: kujnost, tažnost, elektrická a tepelná vodivost, vysoké body tání a varu.