Limita posloupnosti (Orientační test )

Slides:



Advertisements
Podobné prezentace
Zeměpisná síť a zeměpisné souřadnice II
Advertisements

Název projektu: Učení pro život Reg.číslo projektu: CZ.1.07/1.5.00/ Číslo šablony: III / 2 Název sady C: Posloupnosti Autor: Mgr. Dagmar Špalová.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Geometrická posloupnost (Orientační test ) VY_32_INOVACE_22-16  Test obsahuje pět úloh.  U každé úlohy je aspoň jedna odpověď správná.  Na každou úlohu.
Název školy Střední škola pedagogická, hotelnictví a služeb,
Výukový materiál zpracován v rámci projektu EU peníze školám Registra č ní č íslo projektu: CZ.1.07/1.5.00/ Š ablona III/2VY_32_INOVACE_676.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Funkce Vlastnosti funkcí.
ARITMETICKÁ POSLOUPNOST I
Zeměpisná síť a zeměpisné souřadnice
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_106.
Geometrická posloupnost (3.část)
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_94.
Posloupnosti a jejich vlastnosti (Orientační test )
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je RNDr. Zdeněk Binar Obchodní akademie a Střední odborná škola logistická, Opava, příspěvková.
Posloupnosti, řady Posloupnost je každá funkce daná nějakým předpisem, jejímž definičním oborem je množina všech přirozených čísel n=1,2,3,… Zapisujeme.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_764 Výukový materiál zpracován v rámci projektu EU peníze školám.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_114.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_109.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_743.
Limita posloupnosti (3.část)
Pravděpodobnost 10 Binomické rozdělení pravděpodobnosti neboli
Exponenciální a logaritmické funkce a rovnice
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B09 AutorRNDr. Marcela Kepáková Období vytvořeníProsinec.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Posloupnosti a jejich vlastnosti (3.část)
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
VLASTNOSTI FUNKCÍ Příklady.
Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační číslo projektu CZ.1.07/1.5.00/
LINEÁRNÍ FUNKCE.
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_108.
Test č.3  Binomické rozdělení pravděpodobnosti VY_32_INOVACE_21-17.
Posloupnosti a jejich vlastnosti (2.část)
Posloupnosti a jejich vlastnosti (4.část)
vlastnosti lineární funkce
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B07 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Aritmetická posloupnost (Orientační test ) VY_32_INOVACE_22-12  Test obsahuje pět úloh.  U každé úlohy je aspoň jedna odpověď správná.  Na každou úlohu.
Výukový materiál zpracován v rámci oblasti podpory 1.5 „EU peníze středním školám“ Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název.
Čihák Plzeň 2013, 2014 Funkce 4 Mocninná funkce 2.
Limita posloupnosti (2.část) VY_32_INOVACE_
Čihák Plzeň 2013, 2014 Funkce 10 Kvadratická funkce 2.
Číselné posloupnosti.
Repetitorium z matematiky Podzim 2012 Ivana Medková
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Geometrická posloupnost (1.část)
Aritmetická posloupnost (3.část)
Geometrická posloupnost (2.část)
VY_32_INOVACE_22-01 Posloupnosti.
Limita posloupnosti (1.část)
Posloupnosti a jejich vlastnosti (Orientační test ) VY_32_INOVACE_22-02  Test obsahuje pět úloh.  U každé úlohy je aspoň jedna odpověď správná.  Na.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Aritmetická posloupnost
Matematický žebřík – posloupnosti a řady Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno.
Nekonečná geometrická řada Název školyGymnázium Zlín - Lesní čtvrť Číslo projektuCZ.1.07/1.5.00/ Název projektuRozvoj žákovských.
Možnosti využití stavebnice v matematických disciplínách posloupnosti, kombinatorika, pravděpodobnost a analytická geometrie v prostoru Autorem materiálu.
Číslo projektuCZ.1.07/1.5.00/ Název projektuŠkola pro 21. století Číslo a název šablony klíčové aktivityIII/2 Inovace a zkvalitnění výuky prostřednictvím.
Matematický milionář Foto: autor Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Repetitorium z matematiky Podzim 2011 Ivana Vaculová
Aritmetická posloupnost jednoduché příklady
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Výuka matematiky v 21. století na středních školách technického směru
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Transkript prezentace:

Limita posloupnosti (Orientační test ) VY_32_INOVACE_22-25 Limita posloupnosti (Orientační test ) Test obsahuje pět úloh. U každé úlohy je aspoň jedna odpověď správná. Na každou úlohu máte maximálně 30 sekund. Autor testu: RNDr. Ivana Janů

Každá posloupnost (A) má vždy limitu. (B) má nejvýš jednu limitu. (C) má právě jednu limitu. (D) má aspoň jednu limitu. (E) nemá limitu.

Aritmetická posloupnost s nenulovou diferencí d (A) je vždy konvergentní. (B) je vždy divergentní. (C) je konvergentní, je-li d > 0. (D) je konvergentní, je-li d < 0. (E) je konvergentní pouze tehdy, je-li d = 1.

Který z uvedených výroků je pravdivý? (A) Každá konvergentní posloupnost je omezená. (B) Každá omezená posloupnost je konvergentní. (C) Je-li klesající posloupnost omezená shora, je konvergentní. (D) Je-li klesající posloupnost omezená zdola, je konvergentní. (E) Je-li rostoucí posloupnost omezená shora, je konvergentní.

konvergentní? Je geometrická posloupnost an = qn , v níž je (A) Ano, pouze pro q = 2. (B) Ano, pouze pro q = –2. (C) Ano, pouze pro q = ½. (D) Ano, pouze pro q = – ½. (E) Ano, je-li q = ½ nebo q = – ½ .

Konstantní posloupnost an = c (A) je vždy konvergentní. (B) je vždy divergentní. (C) je konvergentní pouze tehdy, je-li c = 0. (D) je konvergentní pouze tehdy, je-li c = 1. (E) je konvergentní pouze tehdy, je-li c > 0. Konec testu

Správné odpovědi orientačního testu

Každá posloupnost (A) má vždy limitu. (B) má nejvýš jednu limitu. (C) má právě jednu limitu. (D) má aspoň jednu limitu. (E) nemá limitu.

Aritmetická posloupnost s nenulovou diferencí d (A) je vždy konvergentní. (B) je vždy divergentní. (C) je konvergentní, je-li d > 0. (D) je konvergentní, je-li d < 0. (E) je konvergentní pouze tehdy, je-li d = 1.

Který z uvedených výroků je pravdivý? (A) Každá konvergentní posloupnost je omezená. (B) Každá omezená posloupnost je konvergentní. (C) Je-li klesající posloupnost omezená shora, je konvergentní. (D) Je-li klesající posloupnost omezená zdola, je konvergentní. (E) Je-li rostoucí posloupnost omezená shora, je konvergentní.

konvergentní? Je geometrická posloupnost an = qn , v níž je (A) Ano, pouze pro q = 2. (B) Ano, pouze pro q = –2. (C) Ano, pouze pro q = ½. (D) Ano, pouze pro q = – ½. (E) Ano, je-li q = ½ nebo q = – ½ .

Konstantní posloupnost an = c (A) je vždy konvergentní. (B) je vždy divergentní. (C) je konvergentní pouze tehdy, je-li c = 0. (D) je konvergentní pouze tehdy, je-li c = 1. (E) je konvergentní pouze tehdy, je-li c > 0. Konec testu