Silové soustavy, jejich klasifikace a charakteristické veličiny Radek Vlach Ústav mechaniky těles, mechatroniky a biomechaniky FSI VUT Brno Tel.: 54114 2860 e-mail: vlach.r@fme.vutbr.cz, http://www.umt.fme.vutbr.cz/~rvlach/
Silové soustavy množina sil působící na těleso (soustavy silového působení – složitější) množina sil působící na těleso Statické působení síly na těleso lze vyjádřit vektorovou veličinou v bodě Ai nebo bivektorovou veličinou v bodě B - Popis silové soustavy - P Výslednicový bivektor: - silová výslednice - momentová výslednice
Výslednice a jsou charakteristické veličiny vyjádřené v bodě B pro danou silovou soustavu – reálně v bodě B nepůsobí !!! Zobecnění na silové působení (reálné soustavy)
Vlastnosti silových soustav s ohledem na výslednicový bivektror - výslednice silová, má vždy charakter volného vektoru => nezávisí na volbě vztažného bodu B. - výslednice momentová, má obecně charakter vázaného vektoru k bodu B. Vlastnosti výslednic a a) změna výslednic je způsobena změnou působišť, velikostí, směru respektive orientace sil působících na těleso – platí obecně b) změna polohy působišť jejich nositelkách Statické působení silové soustavy P na těleso (charakterizované a ) nezávisí na poloze působišť jednotlivých sil na jejich nositelkách
c) změna vztažného bodu – jak se změní výslednice v B a C ? Věta o transpozici vztažného bodu d) analýza vztahu
e) invariant silové soustavy – skalární veličina Osa silové soustavy a) kdy platí ? pokud C existuje tak jich existuje celá řada vektory budou navzájem kolmé
b) podmínka existence bodu C (nutná podmínka) c) Určení bodu C ( )
Typy silových soustav … podle prostorového rozložení nositelek (str. 51-58) - nezávisí na poloze působišť, ale nositelek (možnost posouvat Ai po nositelce ) Silové soustavy nositelky jsou mimoběžné – 3D nositelky jsou rovnoběžné » leží v prostoru - 2D » leží v jedné rovině - 2D nositelky jsou různoběžné » protínají se v různých bodech » protínají se v jednom bodě nositelky jsou totožné Co je třeba sledovat u silové soustavy silovou výslednici - momentovou výslednici - invariant silové soustavy - I existence osy - I = 0 ? charakteristický bod/osa – C ( )
Centrální silová soustava (soustava se společným působištěm) – 2D,3D Působiště v šech sil je možné posouvat do společného bodu A po jejich nositelkách Obecná rovinná silová soustava Vztažný bod si můžeme volit libovolně – výhodně Bϵ r
Silová soustava rovnoběžných sil v prostoru
Rotující silová soustava rovnoběžných sil v prostoru - pokud není B počátek souřadného systému Bod S střed soustavy rovnoběžných rotujících sil se při rotaci nemění a prochází jím osa silové soustavy v každé její poloze => stanovení těžiště
n=0 rovnovážná P n=1 P s osou Silové soustavy podle statických charakteristik - nejednoduší reprezentanti typů silových soustav P n=0 rovnovážná P n=1 P s osou
n=2 P bez osou a) společná nositelka b) různoběžné nositelky b) rovnoběžné nositelky d) mimoběžné nositelky točivá silová soustava <= P bez osou
Nejjednodušší reprezentant Pravidla pro volbu souřadného systému počátek v průsečíku co největšího počtu sil (nositelek) souřadnicové osy volit ve směru co největšího počtu sil je-li několik sil v rovině => volíme jako souřadnicovou rovinu protíná-li několik sil jedinou přímku => volit tuto přímku jako souřadnicovou osu Statické charakteristiky Název P Nejjednodušší reprezentant schéma Fv MvB I ≠0 obecná bez osy dvě mimoběžné síly – „silový kříž“ =0 obecná s osou jedna síla točivá silová dvojice rovnovážná těleso bez sil
Příklad 0,5m 0,9m 0,3m 1m y x z FG Fx=300N Fy=100N Fz=200N Fg=500N