Lineární funkce a její vlastnosti

Slides:



Advertisements
Podobné prezentace
Lineární funkce a její vlastnosti
Advertisements

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Funkce, funkční závislosti Lineární funkce. Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních.
URČENÍ ROVNICE LINEÁRNÍ FUNKCE Název školy: Základní škola Karla Klíče Hostinné Autor: Mgr. Hana Kuříková Název: VY_32_INOVACE_02_B_9_Určení rovnice lineární.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Definice: Funkce f na množině D(f)  R je předpis, který každému číslu z množiny D(f) přiřazuje právě jedno reálné číslo. Jinak: Nechť A, B jsou neprázdné.
Funkce Konstantní a Lineární
Název projektu: Digitalizace výuky oboru Kosmetické služby
MATEMATIKA Funkce.
ANALYTICKÁ GEOMETRIE V ROVINĚ
CZECH SALES ACADEMY Hradec Králové – VOŠ a SOŠ s.r.o.
NÁZEV ŠKOLY: Základní škola Hostouň, okres Domažlice,
Matematika 3 – Statistika Kapitola 4: Diskrétní náhodná veličina
Lineární funkce - příklady
ČÍSLO PROJEKTU CZ.1.07/1.5.00/ ČÍSLO MATERIÁLU 1 – Množiny – teorie
Lineární rovnice a nerovnice I.
Soustava dvou lineárních rovnic se dvěma neznámými
Grafické řešení lineárních rovnic
8.1 Aritmetické vektory.
FUNKCE. Závislost délky vegetační sezóny na nadmořské výšce
8.1.2 Podprostory.
Matematika Parametrické vyjádření přímky
Základní jednorozměrné geometrické útvary
Funkce Funkce (píšeme f (x) ) je každé zobrazení množiny A do množiny R, kde A je libovolná podmnožina množiny R. Zobrazované množině A říkáme definiční.
Repetitorium z matematiky Podzim 2012 Ivana Medková
Soustava dvou lineárních rovnic se dvěma neznámými
3. Diferenciální počet funkcí reálné proměnné
Parametrické vyjádření roviny
Kvadratické nerovnice
Lineární funkce Funkce daná rovnicí , kde . Definiční obor:
FUNKCE – vlastnosti Co znamená rostoucí funkce?
Název prezentace (DUMu): Mocninná funkce – řešené příklady
Rovnice a graf přímé úměrnosti.
Lineární funkce.
LINEÁRNÍ FUNKCE Název školy: Základní škola Karla Klíče Hostinné
Lineární Přímá úměra Konstantní
8.1.3 Lineární obal konečné množiny vektorů
DIGITÁLNÍ UČEBNÍ MATERIÁL
Lineární funkce a její vlastnosti 2
MNOŽINY.
Lineární funkce a její vlastnosti
Rovnice základní pojmy.
Rovnice s absolutními hodnotami
FUNKCE Hejný [str. 240] ontogeneze funkčního myšlení
Graf nepřímé úměrnosti
Dvourozměrné geometrické útvary
Název školy:  ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor:
AUTOR: Mgr. Marcela Šašková NÁZEV: VY_32_INOVACE_4B_17
Příklad postupu operačního výzkumu
* Funkce Matematika – 9. ročník *.
Výuka matematiky v 21. století na středních školách technického směru
KOMBINACE BEZ OPAKOVÁNÍ
7.2 Lineární funkce Mgr. Petra Toboříková
FUNKCE
Dvourozměrné geometrické útvary
Grafy kvadratických funkcí
Kvadratická funkce Funkce daná rovnicí , kde . Definiční obor:
Základy infinitezimálního počtu
Konstrukce trojúhelníku - Ssu
VY_12_INOVACE_Pel_III_13 Funkce – kvadratická funkce
FUNKCE Centrum pro virtuální a moderní metody a formy vzdělávání na
Výuka matematiky v 21. století na středních školách technického směru
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Opakování na 3. písemnou práci
Grafy kvadratických funkcí
Průměr
Grafy kvadratických funkcí
Konstrukce trojúhelníku
Transkript prezentace:

Lineární funkce a její vlastnosti

kde proměnná x je argument funkce. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. Funkci značíme obvykle písmenkem f, ale nic nebrání tomu, abychom použili i jiná písmenka, např. g, h… Obvykle ji zapisujeme ve tvaru: y = f(x), např. y = 2x+1 nebo ve tvaru: f: y = 2x + 1 kde proměnná x je argument funkce.

Opakování − zápis funkce f: y = 2x + 1 kde proměnná x je argument funkce neboli nezávisle proměnná. Nezávislost je dána tím, že její hodnotu můžeme libovolně měnit, ovšem jen v rámci definované množiny, definičního oboru. Množina všech přípustných hodnot argumentu x, tedy všechny hodnoty, kterých může proměnná x pro danou funkci nabývat, se nazývá definiční obor. Značí se: D(f)

Opakování − obor hodnot Ke všem přípustným hodnotám argumentu x přísluší právě jedna funkční hodnota. Ty všechny dohromady tvoří obor hodnot (obor funkčních hodnot). Funkční hodnota neboli závisle proměnná je číslo, které funkce přiřadí konkrétnímu argumentu x. Jinak řečeno − výstupní hodnota funkce. Obvykle ji značíme y nebo f(x). Hodnota závisle proměnné je pro danou funkci jednoznačně určena hodnotou argumentu x - proto „závisle“ proměnná. Obor hodnot je množina všech reálných čísel, které dostaneme jako výstupní hodnotu funkce f, jestliže za x dosadíme všechny přípustné hodnoty z D(f). Značí se: H(f)

Opakování − zadání, zápis funkce 2) Tabulkou 1) Předpisem (vzorcem, rovnicí) x -2 -1 1 2 y -3 3 5 f: y = 2x + 1 3) Grafem

Lineární funkce y = -5x + 3/4 y = -3x + 1,5 y = 0,5x - 3 Lineární funkce je funkce daná rovnicí y = ax + b kde a, b jsou libovolná reálná čísla a definičním oborem je množina všech reálných čísel. Poznámka: Je-li definičním oborem podmnožina (část) množiny všech reálných čísel, hovoříme o části lineární funkce. y = -5x + 3/4 y = -3x + 1,5 y = 0,5x - 3 y = -1/2x – 0,75 y = 2x + 1

Příklady − Lineární funkce Rozhodněte, která z daných rovnic určuje lineární funkci. Své rozhodnutí zdůvodněte. y = 15x y = -3 – x2 y = 5 – 4x y = 4 y = -1/2x + 3/4 y = 4/x – 2/3

Příklady − Lineární funkce Rozhodněte, která z daných rovnic určuje lineární funkci. Své rozhodnutí zdůvodněte. y = 15x ano y = -3 – x2 ne y = 5 – 4x ano y = 4 ano y = -1/2x + 3/4 ano y = 4/x – 2/3 ne

Graf lineární funkce [x;y]=[-2;-5] Sestrojte graf funkce f: y = 2x - 1, pro xR. Grafem funkcí (grafickým znázorněním průběhu funkcí) jsou obvykle křivky. Dle typu funkce to může být přímka, parabola, hyperbola či jiná křivka nebo jen její část. Zápis zadané funkce Definiční obor funkce Abychom křivku co nejlépe „vykreslili“, je dobré znát co nejvíce bodů, které na ni leží. K jejich přehlednému zápisu nám slouží tabulka. Výjimkou je funkce lineární, jejímž grafem je přímka. Jak víme, k sestrojení přímky nám stačí body dva. My zatím ale nedokážeme ze zápisu funkce poznat její typ, a tak budeme prozatím vždy zjišťovat více bodů. Tabulku sestavíme dosazením nezávisle proměnné, která je prvkem definičního oboru, do rovnice zadané funkce a následným výpočtem závisle proměnné funkční hodnoty. Tyto dvě sobě odpovídající hodnoty pak tvoří uspořádanou dvojici souřadnic bodu ležícího na grafu zadané funkce. Tak např. pro x = -2: y = 2.(-2) – 1 = -5. Uspořádané dvojice zapisujeme: [x;y]=[-2;-5]

Graf lineární funkce [x;y] = [-2;-5] x = -1: y = 2.(-1) – 1 = -3 Sestrojte graf funkce f: y = 2x - 1, pro xR. Tak např. pro x = -2: y = 2.(-2) – 1 = -5. Uspořádané dvojice zapisujeme: [x;y] = [-2;-5] x = -1: y = 2.(-1) – 1 = -3 x = 0: y = 2 . 0 – 1 = -1 x = 1: y = 2 . 1 – 1 = 1 x = 2: y = 2 . 2 – 1 = 3 x -2 -1 1 2 y -5 -3 3 x -2 y -5

Graf lineární funkce Sestrojte graf funkce f: y = 2x - 1, pro xR. x -2 -1 1 2 y -5 -3 3

Graf lineární funkce Sestrojte graf funkce f: y = 2x - 1, pro xR. x -2 -1 1 2 y -5 -3 3 Jednotlivé body nyní „spojitě spojíme“. Pokud bychom totiž vypočítávali a následně do grafu vyznačovali další uspořádané dvojice, dostali bychom nekonečně mnoho bodů ležících na křivce všemi procházející.

Funkci, jejímž grafem je přímka, říkáme Graf lineární funkce Sestrojte graf funkce f: y = 2x - 1, pro xR. x -2 -1 1 2 y -5 -3 3 Grafem funkce je přímka. Slovo přímka pochází z latinského „linea“, což označuje čáru nebo přímku. Funkci, jejímž grafem je přímka, říkáme lineární funkce.

Graf lineární funkce Je grafem lineární funkce každá přímka? Ano. Ano. Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. Proč? Ano. Ano. Ano. Ne!

Vlastnosti lineární funkce y = ax + b Nyní budeme zkoumat, jak se mění graf lineární funkce v závislosti na změně koeficientu b. y = - 5x + 3/4 y = - 3x + 1,5 y = 0,5x - 3 y = - 1/2x – 0,75 y = 2x + 1

Vlastnosti lineární funkce Budeme měnit, a tudíž šetřit, jak graf ovlivňuje koeficient b (koeficient a = 1). b = 2: y = x + 2 x 1 y 2 3

Vlastnosti lineární funkce Budeme měnit, a tudíž šetřit, jak graf ovlivňuje koeficient b (koeficient a = 1). b = 2: y = x + 2 x 1 y 2 3 b = 1: y = x + 1 x 1 y 2

Vlastnosti lineární funkce Budeme měnit, a tudíž šetřit, jak graf ovlivňuje koeficient b (koeficient a = 1). b = 2: y = x + 2 x 1 y 2 3 b = 1: y = x + 1 x 1 y 2 b = 0: y = x x 1 y

Vlastnosti lineární funkce Budeme měnit, a tudíž šetřit, jak graf ovlivňuje koeficient b (koeficient a = 1). b = 2: y = x + 2 x 1 y 2 3 b = 1: y = x + 1 x 1 y 2 b = 0: y = x x 1 y b = -1: y = x - 1 x 1 y -1

Vlastnosti lineární funkce Budeme měnit, a tudíž šetřit, jak graf ovlivňuje koeficient b (koeficient a = 1). b = 2: y = x + 2 x 1 y 2 3 b = 1: y = x + 1 x 1 y 2 b = 0: y = x x 1 y b = -1: y = x - 1 x 1 y -1 b = -2: y = x - 2 x 1 y -2 -1

Vlastnosti lineární funkce Budeme měnit, a tudíž šetřit, jak graf ovlivňuje koeficient b (koeficient a = 1). b = 2: y = x + 2 x 1 y 2 3 b = 1: y = x + 1 x 1 y 2 b = 0: y = x x 1 y b = -1: y = x - 1 x 1 y -1 Koeficient b určuje posunutí grafu ve směru osy y. Udává y-ovou souřadnici průsečíku s osou y. b = -2: y = x - 2 x 1 y -2 -1

Příklady − Vlastnosti lineárních funkcí U následujících lineárních funkcí urči průsečíky s osou y. y = 2x + 1 y = 0,5x - 3 y = -3x + 1,5 y = -1/2x – 0,75 y = -5x + 3/4

Příklady − Vlastnosti lineárních funkcí U následujících lineárních funkcí urči průsečíky s osou y. y = 2x + 1 [0;1] y = 0,5x - 3 [0;-3] y = -3x + 1,5 [0;1,5] y = -1/2x – 0,75 [0;-0,75] y = -5x + 3/4 [0;3/4]

Příklady − Vlastnosti lineárních funkcí Sestrojte v téže soustavě souřadnic grafy funkcí:

Příklady − Vlastnosti lineárních funkcí Sestrojte v téže soustavě souřadnic grafy funkcí: x 2 4 y 1

Příklady − Vlastnosti lineárních funkcí Sestrojte v téže soustavě souřadnic grafy funkcí: x 2 4 y 1 x 2 4 y -1

Příklady − Vlastnosti lineárních funkcí Sestrojte v téže soustavě souřadnic grafy funkcí: x 2 4 y 1 x 2 4 y -1 x 2 4 y -2 -3

Příklady − Vlastnosti lineárních funkcí Sestrojte v téže soustavě souřadnic grafy funkcí: x 2 4 y 1 x 2 4 y -1 Jsou-li dvě lineární rovnice určeny rovnicemi y = a1x + b1; y = a2x + b2 a jestliže a1 = a2, pak grafy těchto funkcí jsou navzájem rovnoběžné přímky. x 2 4 y -2 -3

Příklady − Vlastnosti lineárních funkcí Určete lineární funkci, jejíž graf je rovnoběžný s grafem funkce y = -3x a prochází bodem o souřadnicích: [0;4] [0;-2] [0;-4,5] [0;1/2] [0;0]

Příklady − Vlastnosti lineárních funkcí Určete lineární funkci, jejíž graf je rovnoběžný s grafem funkce y = -3x a prochází bodem o souřadnicích: [0;4] y = -3x + 4 [0;-2] y = -3x - 2 [0;-4,5] y = -3x - 4,5 [0;1/2] y = -3x + 1/2 [0;0] y = -3x