Kmity, vlny, akustika Část II - Akustika Pavel Kratochvíl

Slides:



Advertisements
Podobné prezentace
Zvukové jevy (Učebnice strana 166) Svět je plný zvuků. Některé jsou pro nás příjemné, jako třeba hudba, ale některé naopak jsou nám nepříjemné, jako jsou.
Advertisements

Číslo projektu CZ.1.07/1.5.00/ Název školy Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64 Název materiálu VY_32_INOVACE_FY_2E_PAV_01_Světlo.
Fyziologické vlastnosti lidského sluchu Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastKomunikace hudebního umění se.
Příklad 2 Vypočítej chybějící hodnoty Příklad 4 Reproduktor na koncertu rockové skupiny má akustický výkon 15 W. Jakou hladinu akustické intenzity.
V ÝŠKA TÓNU, REZONANCE Ing. Jan Havel. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Materiál je určen pro bezplatné používání pro.
Z DROJ A ŠÍŘENÍ ZVUKU Ing. Jan Havel Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Materiál je určen pro bezplatné používání pro.
Vybrané snímače pro měření průtoku tekutiny Tomáš Konopáč.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Linda Kapounová. Dostupné z Metodického portálu ISSN: , financovaného.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Jordánová Marcela Název prezentace (DUMu): 17. Světlo Název sady: Fyzika pro 3. a 4. ročník středních škol –
Měření délky Zpracovala: ing.Alena Pawerová. Délka je fyzikální veličina FYZIKÁLNÍ VELIČINY určují ve fyzice vlastnosti těles i látek, a také jejich změny.
Experimentální metody oboru – Pokročilá tenzometrie – Měření vnitřního pnutí Další využití tenzometrie Měření vnitřního pnutí © doc. Ing. Zdeněk Folta,
Vytápění Úprava vody. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo materiálu:
INFRAZVUK Martin Soukup septima. Infrazvuk je zvuk o tak nízkém kmitočtu, že ho lidské ucho není schopné zaznamenat Přesná hranice mezi slyšitelným zvukem.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Fyzika – akustika. Klikne-li vyučující na jednotlivé listy prezentace, objeví se otázky a zároveň se spustí časový limit 60 sekund. Po uplynutí časového.
Název školy ZÁKLADNÍ ŠKOLA, JIČÍN, HUSOVA 170 Číslo projektu CZ.1.07/1.4.00/ Číslo a název klíčové aktivity 3.2 Inovace a zkvalitnění výuky prostřednictvím.
Ústrojí sluchové. N Á ZEV Š KOLY: Gymn á zium Lovosice, Sady pionýrů 600/6 Č Í SLO PROJEKTU: CZ.1.07/1.5.00/ N Á ZEV MATERI Á LU: VY_32_INOVACE_6C_01_sluchové.
Základní škola a Mateřská škola Bílá Třemešná, okres Trutnov Autor: Mgr. Petr Tomek Datum/období: podzim 2013 Číslo projektu: CZ.1.07/1.4.00/ Téma.
V LASTNOSTI PLYNŮ Ing. Jan Havel. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Materiál je určen pro bezplatné používání pro potřeby.
Akustika Pavel Kratochvíl Plzeň, ZS.
ELEKTRONICKÉ ZABEZPEČOVACÍ SYSTÉMY
NÁZEV ŠKOLY: Gymnázium Lovosice, Sady pionýrů 600/6
Šablona 32 VY_32_INOVACE_17_30_Pascalův zákon a hydraulika.
BRZDY Mgr. Martin Tichý. BRZDY Mgr. Martin Tichý.
„Řemesla s techniky začneme od píky“
Zpětná vazba v zesilovačích 2
HUDEBNÍ VÝCHOVA HUDEBNÍ NÁSTROJE
Název projektu: ZŠ Háj ve Slezsku – Modernizujeme školu
Vlnění a optika (Fyzika)
Vlastnosti zvuku - test z teorie
Financováno z ESF a státního rozpočtu ČR.
Financováno z ESF a státního rozpočtu ČR.
AUTOR: Kateřina Křížová NÁZEV: VY_32_INOVACE_05_09 sociální role
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
NÁZEV ŠKOLY: SPECIÁLNÍ ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA VARNSDORF AUTOR: Petr Smetana, NÁZEV: VY_32_INOVACE_10_ Hudební nástroje TÉMA: Dechové.
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE
VLASTNOSTI ZVUKU.
NÁZEV ŠKOLY: Speciální základní škola, Chlumec nad Cidlinou,
VY_32_INOVACE_103_Fyzika_zvuk_II
Přenos tepla Požár a jeho rozvoj.
Radiologická fyzika a radiobiologie
Číslo projektu Číslo materiálu název školy Autor Tématický celek
KMITAVÝ POHYB Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. VY_32_INOVACE_06_32.
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE
DIGITÁLNÍ UČEBNÍ MATERIÁL
Fyzika pro lékařské a přírodovědné obory
Název školy: ZŠ Klášterec nad Ohří, Krátká 676 Autor: Mgr
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Délka
EU_32_sada 2_13_PV_Kartografie_Duch
Hudební akustika Mgr. Petr Kalina, Ph.D
KMT/FPV – Fyzika pro přírodní vědy
KMT/FPV – Fyzika pro přírodní vědy - kombi
ZÁKLADNÍ ŠKOLA SLOVAN, KROMĚŘÍŽ, PŘÍSPĚVKOVÁ ORGANIZACE
Regulátory spojité VY_32_INOVACE_37_755
Fyzika 7.ročník ZŠ Tření, Třecí síla Creation IP&RK.
CHVĚNÍ MECHANICKÝCH SOUSTAV.
Akustika Pavel Kratochvíl Plzeň, ZS.
Světlo a jeho šíření VY_32_INOVACE_12_240
Kmity, vlny, akustika Část II - Vlny Pavel Kratochvíl Plzeň, ZS.
AUTOR: Jiří Toman NÁZEV: VY_32_INOVACE_24_10 Zvukové jevy –opakování B
NÁZEV ŠKOLY: Základní škola a Mateřská škola Nedvědice, okres Brno – venkov, příspěvková organizace AUTOR: Jiří Toman NÁZEV: VY_32_INOVACE_06_19 Fyzika,
Mechanické kmitání a vlnění
Provozováno Výzkumným ústavem pedagogickým v Praze.
Střední škola obchodně technická s. r. o.
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Mechanické kmitání a vlnění
Zvukové jevy.
ŠKOLA: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace
Transkript prezentace:

Kmity, vlny, akustika Část II - Akustika Pavel Kratochvíl Plzeň, 2018 - ZS

Zvukové vlnění Zvuk – podélné mechanické vlnění mající schopné vyvolat u člověka sluchový vjem, což odpovídá frekvenci 16 Hz – 20 kHz (nižší frekvence – infrazvuk, vyšší – ultrazvuk). Může se šířit pouze v látkovém prostředí. Zdroje zvuku - ladička, kmitání struny, kmitání vzduchového sloupce v dechových nástrojích, kmitání hlasivek… (vždy platí, že kmitání zdroje se šíří ve formě vlnění) Nauka o zvuku – akustika, dále se dělí na fyzikální akustika (vznik a šíření zvuku, fyzikální nástroje) hudební akustika (principy hudebních nástrojů, ladění…) fyziologická akustika (fungování hlasivek a ucha) stavební akustika (zvuk v místnostech, dobrá „akustika“) elektroakustika (záznam a reprodukce zvuku elektronicky) psychoakustika – vliv zvuku na lidskou psychiku, libozvučnost hlasu…

Ultrazvuk a infrazvuk Infrazvuk: f<16Hz Dorozumívání některých živočichů (sloni, hroši, velryby, aligátoři) Bouře, přechody front, zemětřesení Stavební stroje, lokomotivy Neslyšitelný, ale může působit závratě, tlak v uších, infarkt… Ultrazvuk: f>20kHz Ultrazvuk produkují někteří živočichové – netopýři, delfíni, můry…; pes slyší až do 100kHz Elektroakustické měniče využívající piezoelektrický a magnetostrikční jev Defektoskopie – schopnost odrazu ultrazvuku na materiálových přechodech Echolokace – měření vzdálenosti a polohy – sonar (lodě, ponorky, rybolov) Sonografie (zdravotnictví) 1 - 18MHz – odraz ultazvuku od orgánů (plodu v těle matky) Kavitace(čištění) - mechanické narušování povrchu prudkým nárazem kapaliny na předmět 20 - 40 kHz … rychlé čištění velkých nečistot 40 - 70 kHz … jemnější čištění 70 - 200 kHz … velmi jemné čištění (například optiky) Další využití – měření tloušťky materiálu, sterilizace vody, mléka a jiných roztoků, zvlhčování vzduchu, promíchání galvanické lázně či vytváření suspenze, ultrazvuková liposukce …

Tón, hluk Podle průběhu výchylky zdroje zvuku na čase (ta udává i časový průběh vzniklého vlnění v daném bodě) rozlišujeme: Základní tón – harmonický (sinusový) průběh – například zvuk ladičky Složený tón – periodický, avšak neharmonický průběh, je jej možné rozložit na řadu harmonických průběhů (harmonická analýza) – například zvuk většiny hudebních nástrojů, ale i samohlásky řeči Hluk – neperiodický průběh, nelze jednoznačně určit frekvenci – různé praskání, skřípání, ale i souhlásky řeči! základní tón složený tón

Rychlosti šíření zvuku při pokojové teplotě Zvuk se může šířit pouze v látkových prostředích, ve vakuu to není možné. každém látkovém prostředí se však zvuk šíří stejně, různá je jak jeho rychlost, tak i to jak moc jej dané prostředí pohlcuje. Silnější vazby mezi částicemi vedou k větší rychlosti. Nejpomaleji se tak zvuk zpravidla šíří ve vzduchu (zde však silně závisí na tlaku, čím je větší, tím je zvuk rychlejší!), další jsou zpravidla kapaliny a nejrychleji se šíří zvuk v pevných látkách Rychlost šíření zvuku závisí i na teplotě, v případě vzduchu se rychlost s nárůstem teploty o 1 stupeň Celsia zvětšuje zhruba o 0,6 m*s-1 Jak rychlost zvuku měřit? Historický způsob - současný světelný a zvukový signál → určení času, o který je zvuk pomalejší → výpočet rychlosti vztahem v = s/t, Nyní např. pomocí rezonance vzduchového sloupce určíme pro danou frekvenci f vlnovou délku λ, rychlost pak spočteme vztahem v = f* λ Látka Rychlost zvuku [m/s] Vzduch Voda Rtuť Beton Led Ocel Sklo 340 1 500 1 400 1 700 3 200 5 000 5 200 Rychlosti šíření zvuku při pokojové teplotě

Šíření zvuku Další důležitou otázkou je to, jak se zvuk v daném prostředí pohlcuje. Obecně platí, že k pohlcování zvuku dochází hlavně u nepružných materiálů, typicky plsť, polystyren, plata od vajíček apod. Tyto materiály se používají ke snížení úrovně hluku. Bezodrazová místnost – totální pohlcení zvuku při dopadu na stěny, slouží k akustickým měřením. Dozvuková komora – opačný extrém, nedochází prakticky k žádnému pohlcení, dochází k výraznému prodloužení doby trvání tónu (k tzv. dozvuku) Bezodrazová místnost Dozvuková komora

Ozvěna, dozvuk Šíření zvuku je ovlivněno překážkami, na které zvukové vlnění dopadá. Při odrazu od rozlehlé a dostatečně vzdálené překážky (budova, skalní stěna) může dojít ke vzniku ozvěny. Lidské ucho totiž odliší dva zvuky, mezi nimiž uplynulo alespoň 0,1 s. To je zároveň doba potřebná k vyslovení slabiky. Pokud trvá déle než 0,1 s, než se zvuk odrazí od překážky (tj. překážka je alespoň 17 metrů daleko, protože 17*2/340 = 0,1) a vrátí zpět, dochází ke vzniku jednoslabičné ozvěny. Při větších vzdálenostech mohou nastat i ozvěny víceslabičné. Při vzdálenosti menší než 17 m už původní a odražený zvuk nerozlišíme, to se projeví jako dozvuk. V některých prostorách může dozvuk díky několikanásobným odrazům trvat i několik sekund (například v kostele).

Základy hudební akustiky Tón: hudební zvuk Výška tónu: určena frekvencí (1. harmonické) Barva tónu: je dána obsahem a amplitudami vyšších harmonických Hlasitost: součet amplitud všech dílčích harmonických Časový průběh: (trvání tónu) při ubývání hlasitosti se mění barva tónu Kombinace určitých tónů jsou konsonantní (libozvučné) – odpověď nalezl již Pythagoras – jsou to tóny o frekvencích s celočíselným poměrem: Durová stupnice: Základní tón – komorní a (a1): 440Hz Zdroj:http://www.techmania.cz/edutorium/art_exponaty.php?xkat=fyzika&xser=416b757374696b61h&key=673

Strunné nástroje - housle U houslí vzniká zvuk kmitáním struny, zvuk je periodický, ale neharmonický → lze jej rozložit na jednotlivé harmonické. Frekvence n-té harmonické je dána účinnou délkou struny l, průměrem struny D, napínací silou struny F a hustotou materiálu ρ vztahem fn = n/(l*D)*√F/(π*ρ). S rostoucí délkou struny tak klesá výška tónu, naopak s rostoucí napínací silou F výška roste (význam pro ladění houslí)!

Strunné nástroje - housle Housle mají 4 různě napínané struny různé tloušťky, které jsou ve své celé délce (prázdná struna) naladěny na tony g (198 Hz), d1 (297 Hz), a1 (440 Hz) a e2 (660 Hz). Stisknutím struny se efektivní délka zkrátí, čímž se zvýší výška tonu. Přes kobylku je navázána těsná mechanická vazba mezi strunou a rezonanční skřínkou (tělo houslí), kde dochází k rezonanci vzduchu (zásadní význam pro kvalitu zvuku houslí) Na barvu tonu má zásadní vliv to, jakým způsobem jsou struny rozkmitávány (zda smyčcem v dané poloze či drnkáním). Speciální případ –tzv. flažolety, nedokonalé přitlačení struny k hmatníku a tím cílené utlumení některých harmonických složek Průběh tonu houslí v závislosti na způsobu rozkmitání struny: a) smyčec b) brnknutí c) kladívko

Strunné nástroje - kytara Fyzikální princip je podobný jako u houslí, kytara má dokonce 6 strun: E (83 Hz), A (110 Hz), d (148 Hz), g (198 Hz), h (247 Hz) a e1 (330 Hz). Zmáčknutím více strun najednou se hrají akordy (souzvuk 3 a více tónů, 3 tony – kvintakord, 4 tony – septakord). Pro tvorbu akordů platí přísná pravidla (zabývá se jimi tzv. harmonie), většinou stavěny na terciovém principu (liší se o tercie, tj. frekvenční poměr mezi jednotlivými tóny je 5:4) V kytarových zpěvnících je u jednotlivých akordů vždy naznačena poloha prstů na hmatníku Speciální případ kytary – dvanáctistrunná (španělská) kytara, má zdvojené struny a bohatší zvuk, užívá se hodně v country music.

Strunné nástroje - klavír Zvuk u klavíru vzniká chvěním strun rozkmitaných dřevěným kladívkem. Jedna klávesa na klaviatuře odpovídá vždy jednomu tónu (bílé klávesy – celé tóny, černé klávesy – půltóny). Ladění klavíru je velmi náročné a nelze jej jednoduše upravit Zesílení a zeslabení tónu se provádí pomocí dusítek jednotlivých strun, tato dusítka jsou ovládána pedály, na které pianista šlape (celkem 3 pedály, každý má jinou funkci) Klavír se používá často jako doprovodný nástroj při sólových vystoupeních, vyrábí se z kvalitního smrkového dřeva. Má velmi široký tónový rozsah, klasické klavíry umožňují hrát přes více než sedm oktáv (mají celkem 52 bílých a 36 černých kláves)

Dechové nástroje - klarinet U dechových nástrojů vzniká zvuk chvěním vzduchového sloupce. Toto chvění však musí být něčím vyvoláno. Základní součástí klarinetu je hubička obsahující plátek z třtinového dřeva, který se rozkmitává dechem hudebníka. Kmitání se šíří ve formě vlnění do nástroje a vzniká chvění vzduchového sloupce. Konkrétní tóny se získávají tím, jaké klapky jsou zmáčknuty a jaké nikoliv, každému tónu odpovídá konkrétní zmáčknutí klapek. Existují různé typy klarinetů podle toho, v jaké tónině jsou naladěny (nejčastější B klarinet, ale i A klarinet, E klarinet apod.) Zajímavost – u B klarinetu dochází díky ladění k tomu, že nota c v notovém zápise se ozývá jako b. Při souhře u písničky, která nebyla napsána speciálně pro klarinet je tudíž nutný přepis do jiné tóniny.

Hudební nástroje klasické Tónem nazýváme zvuk, vznikající v klasických hudebních nástrojích periodickým kmitáním: - pružných dřevěných plátků (klarinety , hoboje) - listových pružin (Harmonika) - umělých či přírodních blan (Tympány, buben) - strun (housle, klavíry, kytary, Loutny, vozembouch) - hudebníkových rtů (Horny, Trubky, pozoun). - nárazem proudu vzduchu na ostrou hranu otvoru (píšťaly u varhan). Další fyzikální děje podílející se na vzniku a trvání tónu v klasických hudebních nástrojích: (Tyto fyzikální děje zesilují některá pásma kmitočtů ) - mechanická rezonance ozvučných skříněk nástrojů - stojaté vlnění vznikající v trubicích dechových nástrojů - Helmoltzovy rezonátory.