Fyzika pro 4.ročník Z.Strouhalová

Slides:



Advertisements
Podobné prezentace
Hvězdy
Advertisements

Stavové veličiny hvězd
Vznik a vývoj hvězd Fyzika, seminář z fyziky
Číslo projektu CZ.1.07/1.5.00/ Název školy Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64 Název materiálu VY_32_INOVACE_FY_2E_PAV_01_Světlo.
Často slyšíme věty: Led je lehčí než voda Železo je těžší než peří Má však železná jehla větší hmotnost než peří v peřině?
IBWS #V, Vlašim1 Račí oči pro vesmír Libor Švéda a,b ; René Hudec c ; Adolf Inneman b ; Ladislav Pína a,b ; Veronika Semencová b ; Michaela Skulinová c.
oblaka Venuše dobře odrážejí sluneční svit a proto je tato planeta ve vhodné poloze po Slunci a Měsíci nejjasnějším tělesem na obloze Večernice někdy.
GRAVITAČNÍ SÍLA. GRAVITAČNÍ POLE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Linda Kapounová. Dostupné z Metodického portálu ISSN: , financovaného.
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ AUTOR: Ing. Miluše Pavelcová NÁZEV: VY_32_INOVACE_ M 16 TÉMA: Mapa oblohy ČÍSLO PROJEKTU:
ČOČKY Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. VY_32_INOVACE_10_32.
Slunce, Země, Střídání dne a noci, ročních období
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_43_08 Název materiáluVznik a.
Vznik, kosmické objekty ve sluneční soustavě.  před 4,8 miliardami let společně se Sluncem  spojováním částeček hmoty  prachová zrna  krystalky zmrzlých.
Elektronické učební materiály – 1. stupeň Společnost Autor: Mgr. Lenka Radošová OBJEVUJEME VESMÍR VESMÍRNÁ TĚLESA SLUNEČNÍ SOUSTAVA CESTY DO VESMÍRU.
Země ve vesmíru Vesmír – galaxie – sluneční soustava - Země.
Model atomu. Ruthefordův experiment Hmota je prázdný prostor Rozměry atomu jádro (proton, neutron) průměr m průměr dráhy elektronu (elektronový.
Mechanika II Mgr. Antonín Procházka. Co nás dneska čeká?  Mechanická práce, výkon, energie, mechanika tuhého tělesa.  Mechanická práce a výkon, kinetická.
 Anotace: Materiál je určen pro žáky 9. ročníku. Žák navazuje na znalosti ze zeměpisu. Žák porovnává poznatky získané v zeměpise a ve fyzice s podrobnějšími.
TŘENÍ Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. VY_32_INOVACE_18_29.
ŠABLONA 32 VY_32_INOVACE_09_32_SOUHVĚZDÍ, GALAXIE, SLUNEČNÍ SOUSTAVA.
Neptun Neptun je osmá a od slunce nejvzdálenější planeta sluneční soustavy řadí se mezi plynné obry. Neptun má pravděpodobně modrou barvu.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_43_17 Název materiáluVznik a.
Hvězdy - základní přehled Vypracoval: Jaroslav Prokop Garant práce: Mgr. Alexandra Zálešáková.
HVEZDY v. HVĚZDY Hvězdy jsou největší a nejdůležitější objekty ve vesmíru. Udává se, že v naší galaxii (Mléčné dráze) je 95% viditelné hmoty ukryto ve.
Vesmír je označení pro veškerý prostor, časoprostor, hmotu a energii v něm. V užším smyslu se vesmír také někdy užívá jako označení pro kosmický prostor,
Financováno z ESF a státního rozpočtu ČR.
Název školy: ZŠ a MŠ Verneřice Autor výukového materiálu: Eduard Šram
GRAVITAČNÍ SÍLA. GRAVITAČNÍ POLE
Zatmění měsíce Ing. Jan Havel.
Obsah úvod povrch Měsíce pohyby Měsíce polokoule Měsíce
Slunce Juli Krejčí.
Název školy Střední zdravotnická škola a Vyšší odborná škola zdravotnická Nymburk, Soudní 20 IČO Číslo projektu CZ.1.07/1.5.00/ Název projektu.
Matematika Koule.
Vznik a šíření elektromagnetické vlny
Barva světla, šíření světla a stín
Vesmír Co uvidíš, zvedneš-li svůj zrak k obloze? mraky, oblohu
Obecná teorie relativity
Vesmír hvězdy = hvězdná soustava = Galaxie – tvar plochého disku.
VESMÍR.
AUTOR: Eva Strnadová NÁZEV:VY_52_INOVACE_04_05_27_VESMÍR TÉMA:VESMÍR
Název školy: ZŠ Klášterec nad Ohří, Krátká 676 Autor: Mgr
Neživá příroda - voda Název školy: Základní škola Karla Klíče Hostinné
VY_52_INOVACE_31_ Slunce ČLOVĚK A JEHO SVĚT 5. ročník
KINETICKÁ TEORIE STAVBY LÁTEK.
Člověk a vesmír – 5. ročník
Astronomické jednotky délky
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Měsíční fáze
Základní škola Jakuba Jana Ryby Rožmitál pod Třemšínem Efektivní výuka pro rozvoj potenciálu žáka projekt v rámci Operačního programu VZDĚLÁVÁNÍ PRO.
Autorem materiálu, není-li uvedeno jinak, je Jitka Dvořáková
Radiologická fyzika Rentgenové a γ záření podzim 2008, osmá přednáška.
SLUNEČNÍ SOUSTAVA Základní škola a Mateřská škola Valašské Meziříčí, Poličná 276, okres Vsetín, příspěvková organizace projekt č. CZ.1.07/1.4.00/
SLUNCE Slunce – nejbližší hvězda a střed naší planetární soustavy – je ve srovnání se všemi světelných zdroji, které člověk za dlouhou dobu své existence.
Magnetické vlastnosti látek
Země ve vesmíru.
Světlo a jeho šíření VY_32_INOVACE_12_240
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Světelné jevy -shrnutí
Fyzika elektronového obalu
Vzájemné silové působení těles
Název školy Gymnázium, střední odborná škola, střední odborné učiliště a vyšší odborná škola, Hořice Číslo projektu CZ.1.07/1.5.00/ Název materiálu.
Matematická gramotnost napříč vzděláváním
Název školy: ZŠ Bor, okres Tachov, příspěvková organizace
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Designed in Czech Republic by David Šulc Made in Czech Republic
Štěpán Hájek KAB Tadeáš Rach KAB
Přírodopis 9. ročník Téma: Vesmír a jeho vznik Obsah: 1. Big Bang
SPEKTROSKOPIE Eva a Terka.
2. Centrální gravitační pole
Transkript prezentace:

Fyzika pro 4.ročník Z.Strouhalová Hvězdy Fyzika pro 4.ročník Z.Strouhalová 20.9.2018

Hvězdná obloha Severní obloha Pro pozorovatele na Zemi se obloha jeví jako kulová plocha velikého poloměru, v jejímž středu je Země. Na tuto myšlenou kulovou plochu se nám promítají hvězdy jako svítící body. Hvězdy ležící ve stejném směru pozorujeme jako jeden bod. Severní obloha 20.9.2018 Jižní obloha

Souhvězdí Souhvězdí LYRA – hvězda Vega - Obloha je rozdělena na 88 oblastí = jednotlivých souhvězdí. Tyto skupiny hvězd po spojení myšlenými čarami připomínají obrazy zvířat, ptáků, antických hrdinů apod. a podle toho mají latinské jméno. Označení hvězd v souhvězdí : nejjasnější hvězdy – latinské jméno a písmeno , , ostatní hvězdy -číslo Souhvězdí LYRA – hvězda Vega - 20.9.2018

Zvěrokruh Ekliptika – zdánlivá dráha Slunce , kterou projde na obloze za jeden rok. Zvěrokruh -12 souhvězdí, kterými ekliptika prochází. Jména souhvězdí pocházejí z Babylonské říše : Kozoroh ( 22.12. – 20.1). Vodnář ( 21.1. – 19.2.), Ryby ( 20.2. – 20.4.), Beran ( 21.3. – 20.4.), Býk ( 21.4. – 21.5.), Blíženci ( 22.5. - 21.6.), Rak ( 22.6. – 23.7.), Lev ( 24.7. – 23.8.), Panna ( 24.8. – 23.9.), Váhy ( 24.9. – 23.10., Štír ( 24.10.- 22.11.), Střelec ( 23.11. – 21.12.) Slunce ekliptika Země 20.9.2018

Vzdálenost hvězd od Země 1.Slunce –nejbližší hvězda – 150 . 10 6 km = 1AU 2.Ostatní hvězdy – určení roční paralaxy = úhel  Je – li paralaxa hvězdy 1“, pak její vzdálenost se nazývá 1 parsek( pc). 1pc = 3,27ly( světelné roky) Měření ze Země – paralaxy do 0.01“, měření z družic- paralaxy do 0,001“ Země 1AU  hvězdy vzdálenost Slunce 8 minut Proxima Centauri 4,27ly Sirius 8,61ly 20.9.2018    

Získávání informací o hvězdách 1.Spektrum elektromagnetického záření hvězdy 2.Pozorování detailů povrchu – u SLUNCE V roce 1995 získán obraz povrchu další hvězdy Betelgeuse ze souhvězdí Orion 3.Modely hvězd – v souladu s fyzikálními zákony je stanovena teoreticky vnitřní stavba hvězdy, které odpovídá určité, výpočty stanovené záření. Jestliže souhlasí se skutečným zářením zkoumané hvězdy, model se blíží této hvězdě. Betelgeuse Orion 20.9.2018

Druhy hvězd podle pozorování dalekohledem (okem vidíme asi 3000 hvězd) - jednoduché hvězdy – jasné samostatné body ( asi 14% hvězd) – např. Slunce - vícenásobné hvězdy – skupina hvězd, které obíhají kolem společného těžiště - pozorovány jako jeden bod a) dvojhvězdy zákrytové – pravidelně se zesiluje a zeslabuje jasnost b) dvojhvězdy spektroskopické – spektrum se pravidelně mění ( posouvání k fialovému a pak červenému okraji – Dopplerův jev) - rozdělování a zase spojování spektrálních čar). - dvojhvězd T+ a příklady Dvojhvězda 20.9.2018

Stavové veličiny - vlastnosti hvězd vyjádřené číselně Nejjasnější hvězda noční oblohy - dvojhvězda Zářivý výkon Chemické složení Jasnost Hmotnost Hvězdná velikost Poloměr Barva Hustota Teplota Doba rotace Poprvé stanovena hvězdná velikost ve starověku Ptolemaiem Určeno šest velikostí Nejjasnější hvězdy – první velikost, nejslabší hvězdy – šestá velikost Souhvězdí Velký pes 20.9.2018

Definice stavových veličin I. Zářivý výkon – L = celková energie, kterou hvězda vyzáří za sekundu – Slunce L= 3,83 .10 26 W Jasnost( hustota zářivého toku) – j = množství zářivé energie hvězdy, které projde za sekundu plochou 1m 2 , jednotka W m -2   Hvězda o výkonu L Vzdálenost hvězdy od pozorovatele Hvězdná velikost -magnituda (logaritmická míra jasnosti objektu) a)relativní hvězdná velikost – relativní magnituda m: hvězda A – 1.velikost podle Ptolemaia, hvězda B – 6.velikost podle Ptolemaia mA- mB = 1 – 6 = -5, jA/ jB = 100, log( jA/ jB) ) = 2 Hvězdu 100krát jasnější vnímá lidské oko jako jen 2krát jasnější. Pro magnitudy platí Pogsonova rovnice : mA- mB = - 2.5 log( jA/ jB) ) nejjasnější hvězda celé noční oblohy - Sirius - m = - 1,6.  Slunce Měsíc v úplňku Sírius - 26,6, - 12,6 - 1,6 Hvězda o L Vzdálenost hvězdy od pozorovatele r Dvě hvězdy stejného zářivého výkonu pozorujeme jako různě jasné, je-li jejich vzdálenost od Země různá. Platí j = L/ 4r2 r Plocha 1m2

Definice stavových veličin II. b)absolutní hvězdná velikost - absolutní magnituda M Magnituda , kterou by hvězda měla podle předchozí definice ve vzdálenosti 10 pc. Závisí jen na skutečné svítivosti hvězdy. Každou hvězdu si představíme „přestěhovanou“ do vzdálenosti 10 pc a v této vzdálenosti určujeme M M = m + 5 - 5 log r, m = relat.magnituda , r – vzdálenost hvězdy v pc Př. Slunce M = 4,83, m = - 26.6 Barva - používá se porovnání se spojitým spektrem černého tělesa, ve kterém se při zvyšování teploty maximum intenzity světla přesouvá ke kratším vlnovým délkám. Teplota : 4 000K 5 500K 6 000 K 15 000K Barva hvězdy červená oranžová žlutá bílá až modrá Teplota se mění se vzdáleností od středu hvězdy, určení je komplikované a) barevná teplota – teplota černého tělesa, které má barvu jako hvězda b) efektivní teplota – teplota černého tělesa velkého jako hvězda, které má stejný zářivý výkon jako hvězda Chemické složení – nejsou velké rozdíly mezi hvězdami. Zjišťuje se podle čar spektra, i když teplota více ovlivňuje vzhled spektra než chemické složení hvězdy. Hvězdy se dělí na 9 spektrálních typů označených písmeny.

Definice stavových veličin III. Hmotnost hvězd (0,1 až 80 MSlunce). V hmotnostech se hvězdy liší při vzniku až v poměru 1:1000. Málo hmotné hvězdy vůbec nevzniknou -  gravitační přitahování není dostatečně silné, aby tlak a teplota v centru umožnily zapálení termonukleární syntézy. Hmotné hvězdy se vyvíjejí podstatně rychleji. Rozměr (10 km až 1000 RSlunce) K výpočtu se využívá teploty. Za předpokladu, že barevná a efektivní teplota jsou stejné, je vypočítána velikost černého tělesa tvaru koule teploty hvězdy.Jeho poloměr je poloměr zkoumané hvězdy. Typ hvězdy Rozměr Veleobři až 500 R Slunce Obři až 80 R Slunce Hlavní posloupnost 0,5 – 20 R Slunce Bílí trpaslíci 1000 – 1000 km Neutronové hvězdy 10 – 100 km Hustota (10-7 až 1015 ρSlunce). V hustotách se hvězdy liší nejvíce.   Veleobr Slunce bílý trpaslík Neutronová hvězda 10-6 g/cm3 1,4 g/cm3 106 g/m3  1014 g/cm3   Betelguese- červený veleobr

Vznik a vývoj hvězd - Hertzsprungův – Russellův diagram hvězdy v závislosti na jejich absolutní hvězdné velikosti ( zářivém výkonu) a na spektrálním typu( na teplotě) 1 – 3 smršťování oblaku, zvyšování teploty 3 zapálení TJ reakcí, „pobyt“ na hlavní posloupnosti 3-4 dohoření H v jádře 4-5 smršťování jádra, 5 zapálení H ve slupce kolem jádra 5-6 hoření H ve slupce, zvyšování hmotnosti He jádra 6 zapáleni He v jádře, červený, žlutý oranžový obr 6-7 rozpínání a chladnutí obalu -> únik hmoty 7 dohoření He v jádře, smršťování jádra, zapálení He v obálce, ... atd. až po skupinu železa 8 -> stadia pulsací, gravitační smršťování. Během svého vývoje mění hvězda svou teplotu i zářivý výkon, „cestuje „ po HR diagramu.

Hvězdy hlavní posloupnosti Vývojová stadia hvězd Předhvězdný vývoj Z prvopočátečních plynoprachových mlhovin se vyvíjejí nestabilní prvotní shluky (globule) - zárodky hvězd. Gravitačním smršťováním se v centru uvolňuje tepelná energie. Roste tlak a teplota v nitru. Na tzv. Hyashiho linii se zastaví rychlé smršťování. Později stoupne teplota a tlak v nitru natolik, že se zapálí termonukleární reakce - narodí se hvězda. Hvězdy hlavní posloupnosti Spalují v jádře vodík na helium (pp řetězec nebo CNO cyklus). Vysoce stabilní konfigurace, ve které setrvávají řádově deset miliard let. Vyzařovaný výkon je úměrný třetí mocnině hmotnosti hvězdy. Je známo zhruba 70 planet u hvězd hlavní posloupnosti. Asi 5% hvězd hlavní posloupnosti má planetu typu Jupiter ve vzdálenosti do 2 AU. Kolik je planet zemského typu není známo. Globule-zárodky hvězd

Reakce v nitru hvězd pp řetězec (dominuje při nižších teplotách): Betheův CNO cyklus (dominuje při vyšších teplotách): 20.9.2018

Vývoj hvězdy v závislosti na její hmotnosti Hvězdy s velkou hmotností „žijí „kratší dobu Hvězda hlavní posloupnosti Hmotnost srovnatelná se Sluncem Hmotnost aspoň 8krát větší než Slunce Červený obr – velké zvětšení objemu Červený veleobr- přeměna He na C , po vyhoření hélia, přeměna He na C C na O a další prvky Bílý trpaslík - hmotnost menší než Supernova – smršťování hvězdy 1.4 hmotnosti Slunce výbuch , velké zvýšení záření poslední viditelná ze Země r. 1604 Černý trpaslík – po.vychladnutí bílého trpaslíka - konec většiny hvězd Neutronová hvězda Černá díra-další kolaps hmotnost menší silné gravit.pole nedovolí než 2 hmotnosti Slunce uniknout ani fotonům

Slunce Já,Já jsem vaše SUPERSTAR!  Slunce vzniklo asi před 4,6 miliardami let a bude svítit ještě přibližně 7 miliard let. Stejně jako všechny hvězdy hlavní posloupnosti i Slunce září díky termonukleárním reakcím v jádře. Povrch se neustále mění, vznikají a zanikají sluneční skvrny, protuberance, erupce i jiné sluneční útvary. Slunce ovlivňuje ostatní tělesa Sluneční soustavy nejen gravitačně, ale i zářením v širokém spektru vlnových délek, magnetickým polem i proudem nabitých částic.    20.9.2018