Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu www.rvp.cz, ISSN:

Slides:



Advertisements
Podobné prezentace
Slovní úlohy o pohybu.
Advertisements

Slovní úlohy o pohybu Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Slovní úlohy O pohybu 2.
Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
1 Pohybové úlohy 2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpo č tu Č R. Provozováno Výzkumným ústavem.
1 Pohybové úlohy Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpo č tu Č R. Provozováno Výzkumným ústavem.
Rovnice a nerovnice Slovní úlohy VY_32_INOVACE_RONE_15.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková Název prezentace (DUMu): 7. Kinematika – rozlišování pohybů a jejich skládání v prakt. úlohách.
Rozklad mnohočlenů na součin Rozkladové vzorce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického.
POHYB TĚLES PROTI SOBĚ – STEJNÁ DOBA Slovní úloha o pohybu I.
Název školy: Základní škola a Mateřská škola, Hradec Králové, Úprkova 1 Autor: Mgr. Rachotová Markéta Název: VY_32_INOVACE_11C_15_Slovní úlohy o pohybu-příklady.
Pohybové úlohy 3 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633 Autor: Bc. František Vlasák, DiS. Název materiálu: VY_52_INOVACE_F7.Vl.33_Prumerna_rychlost_graficke_znazorneni.
CZ.1.07/1.4.00/ "Učíme se moderně" Digitální učební materiál zpracovaný v rámci projektu Šablona:III/2 Inovace a zkvalitnění výuky prostřednictvím.
Mnohočleny Sčítání, odčítání Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu
Slovní úlohy o pohybu Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Slovní úlohy o pohybu Lineární rovnice Matematika 8.ročník ZŠ
Průměrná rychlost Tematická oblast Fyzika Datum vytvoření Ročník
Rovnice ve slovních úlohách II.
Funkce Konstantní a Lineární
SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICEMI.
Pohyb těles Název školy: ZŠ Štětí, Ostrovní 300 Autor: Francová Alena
VY_32_INOVACE_Pel_II_18 Soustavy rovnic – slovní úlohy6
SLOVNÍ ÚLOHY O POHYBU Název školy: Základní škola Karla Klíče Hostinné
Slovní úlohy o směsích (řešené lineární rovnicí o jedné neznámé)
Provozováno Výzkumným ústavem pedagogickým v Praze.
OZNAČENÍ MATERIÁLU: VY_32_INOVACE_90_M8
Řešení nerovnic Lineární nerovnice
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Rovnoměrný pohyb Tematická oblast Fyzika Datum vytvoření Ročník
PRŮMĚRNÁ RYCHLOST SLOVNÍ ÚLOHY
NÁZEV: VY_32_INOVACE_03_13_M8_Hanak TÉMA: Lineární rovnice
Základní škola a mateřská škola v Novém Strašecí
Název školy: ZŠ Štětí, Ostrovní 300 Autor: Francová Alena
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Název školy Základní škola Jičín, Husova 170 Číslo projektu
Fyzika – měření objemu a převody jednotek objemu
PRŮMĚRNÁ RYCHLOST SLOVNÍ ÚLOHY
2. ROVNOMĚRÝ A NEROVNOMĚRNÝ POHYB
Rovnice a graf přímé úměrnosti.
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Řešení nerovnic Lineární nerovnice
Pravidla pro počítání s mocninami
Slovní úlohy o pohybu Pohyby stejným směrem..
Pohybové úlohy 2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
M-Ji-CU058-Slovni_ulohy_o_pohybu
Délka kružnice, obvod kruhu
Rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Název vzdělávacího materiálu Tělesa a jejich rychlosti
Slovní úlohy o společné práci
Vyberte správně definiční obor funkce podle obrázku
Lineární funkce v praxi
Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Soustava rovnic Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Slovní úlohy o pohybu.
Pohybové úlohy Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Konstrukce trojúhelníku podle věty sus
Slovní úlohy o pohybu 1 typ úloh – stejný směr
Konstrukce pravoúhlého trojúhelníku pomocí Thaletovy kružnice,
Slovní úlohy o pohybu.
Hra (AZ kvíz) ke zopakování či procvičení učiva:
Příklady - opakování Auto se pohybovalo 3 hodiny stálou rychlostí 80 km/h, poté 2 hodiny rychlostí 100 km/h, pak 30 minut stálo a nakonec 2,5 hodiny rychlostí.
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Kvadratická rovnice Vlastnosti kořenů kvadratické rovnice
Převody jednotek obsahu - 2.část
Vyberte správně definiční obor funkce podle obrázku
Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku podle věty sus
Transkript prezentace:

Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slovní úlohy o pohybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné rychlosti: v je průměrná rychlost v km/h (m/s) s je ujetá dráha v km (m) t je čas potřebný k ujetí dráhy s v hodinách (sekundách) Pro úlohy o pohybu si z tohoto vzorce vyjádříme dráhu, popř. čas

V čem se tyto dva příklady o pohybu liší? Slovní úlohy o pohybu. Ve slovních úlohách o pohybu lze rozlišit dva základní typy příkladů: 1. příklad: Kdy a kde se potkají dva vlaky, které vyjely současně proti sobě ze stanic A a B vzdálených 60 km, jestliže vlak ze stanice A jel rychlostí 70 km/h a vlak ze stanice B rychlostí 50 km/h? 2. příklad: Petr vyšel za babičkou průměrnou rychlostí 5 km/h, za ½ hodiny za ním vyjel po stejné dráze Honza na kole průměrnou rychlostí 20 km/h. Za kolik minut Honza dohoní Petra a kolik km při tom ujede? V čem se tyto dva příklady o pohybu liší? V 1. příkladu se jedná o pohyb dvou vlaků proti sobě. V 2. příkladu dohání rychlejší Honza pomalejšího Petra.

Slovní úlohy o pohybu. Ve slovních úlohách o pohybu lze rozlišit dva základní typy příkladů: I) Na střetnutí (objekty se pohybují proti sobě) II) Na dohánění (rychlejší objekt dohání pomalejší objekt)

Slovní úlohy o pohybu. s1 = s2 Rovnost ujetých drah II) Úlohy na dohánění (rychlejší objekt dohání pomalejší objekt) náskok okamžik výjezdu rychlejšího objektu místo dohnání v1 je rychlost pomalejšího objektu v2 je rychlost rychlejšího objektu s1 je vzdálenost, kterou urazí pomalejší objekt do místa dohnání s2 je vzdálenost, kterou urazí rychlejší objekt do místa dohnání s1 = s2 Rovnost ujetých drah základní rovnice úloh na dohánění

Rovnost ujetých drah s1 = s2 Slovní úlohy o pohybu - úlohy na dohánění Př. 1: V 8.00 hod. vyjel z místa A cyklista průměrnou rychlostí 20 km/h. V 10.00 hod. vyjel z místa A za cyklistou motocyklista průměrnou rychlostí 70 km/h. Za jak dlouho a v jaké vzdálenosti od A dostihne motocyklista cyklistu? Provedeme náčrt úlohy: náskok okamžik výjezdu rychlejšího motocyklisty v 10.00 8.00 10.00 místo dohnání A v1 je rychlost cyklisty v2 je rychlost motocyklisty s1 je vzdálenost, kterou urazí cyklista do místa dohnání s2 je vzdálenost, kterou urazí motocyklista do místa dohnání Rovnost ujetých drah s1 = s2 základní rovnice úloh na dohánění

okamžik výjezdu rychlejšího objektu Slovní úlohy o pohybu - úlohy na dohánění Př. 1: V 8.00 hod. vyjel z místa A cyklista průměrnou rychlostí 20 km/h. V 10.00 hod. vyjel z místa A za cyklistou motocyklista průměrnou rychlostí 70 km/h. Za jak dlouho a v jaké vzdálenosti od A dostihne motocyklista cyklistu? náskok okamžik výjezdu rychlejšího objektu v 10.00 8.00 10.00 místo dohnání A t2 = t je neznámá doba jízdy motocyklu do dohnání t1 = t + 2 je doba jízdy cyklisty do dohnání Vyplníme tabulku: s [km] = v.t v [km/h] t [h] cyklista motocykl. - známé rychlosti - neznámé časy - vypočítáme dráhy s1 a s2 Dráhy s1 a s2 dosadíme do rovnice s1 = s2

okamžik výjezdu rychlejšího objektu Slovní úlohy o pohybu - úlohy na dohánění Př. 1: V 8.00 hod. vyjel z místa A cyklista průměrnou rychlostí 20 km/h. V 10.00 hod. vyjel z místa A za cyklistou motocyklista průměrnou rychlostí 70 km/h. Za jak dlouho a v jaké vzdálenosti od A dostihne motocyklista cyklistu? náskok okamžik výjezdu rychlejšího objektu v 10.00 8.00 10.00 místo dohnání A t2 = t je neznámá doba jízdy motocyklu do dohnání Rovnici s jednou neznámou t vyřešíme: 20(t + 2) = 70t 20t + 40 = 70t 40 = 50t t = 4/5 h t je doba jízdy motocyklu do dohnání

okamžik výjezdu rychlejšího objektu Slovní úlohy o pohybu - úlohy na dohánění Př. 1: V 8.00 hod. vyjel z místa A cyklista průměrnou rychlostí 20 km/h. V 10.00 hod. vyjel z místa A za cyklistou motocyklista průměrnou rychlostí 70 km/h. Za jak dlouho a v jaké vzdálenosti od A dostihne motocyklista cyklistu? náskok okamžik výjezdu rychlejšího objektu v 10.00 8.00 10.00 místo dohnání A Řešením rovnice jsme zjistili dobu jízdy motocyklu do dohnání Zkouška správnosti: Dráha cyklisty do dohnání: s1 = 20.4/5 + 20.2 = 16 + 40 = 56 km Dráha motocyklisty do dohnání: s2 = 70.4/5 = 56 km s1 = s2 Odpověď: Motocyklista dostihne cyklistu za 48 minut ve vzdálenosti 56 km od A.

Slovní úlohy o pohybu - úlohy na dohánění Př. 2: Petr vyšel za babičkou průměrnou rychlostí 5 km/h, za ½ hodiny za ním vyjel po stejné dráze Honza na kole průměrnou rychlostí 20 km/h. Za kolik minut Honza dohoní Petra a kolik km při tom ujede? okamžik výjezdu Honzy (po ½ hodině) náskok místo dohnání v1 je rychlost Petra v2 je rychlost Honzy na kole s1 je dráha Petra do dohnání s2 je dráha Honzy do dohnání t2 = t je neznámá doba jízdy Honzy do dohnání Vyplníme tabulku: s [km] = v.t v [km/h] t [h] Petr Honza - známé rychlosti - neznámé časy - vypočítáme dráhy s1 a s2 Dráhy s1 a s2 dosadíme do rovnice s1 = s2

Slovní úlohy o pohybu - úlohy na dohánění Př. 2: Petr vyšel za babičkou průměrnou rychlostí 5 km/h, za ½ hodiny za ním vyjel po stejné dráze Honza na kole průměrnou rychlostí 20 km/h. Za kolik minut Honza dohoní Petra a kolik km při tom ujede? t2 = t je neznámá doba jízdy Honzy do dohnání Rovnici s jednou neznámou t vyřešíme: 5(t + 1/2) = 20t 5t + 2,5 = 20t 2,5 = 15t t = 2,5/15 Řešením rovnice jsme zjistili dobu jízdy Honzy do dohnání Zkouška správnosti: Dráha Petra do dohnání: s1 = s2 Dráha Honzy do dohnání: Odpověď: Honza dostihne Petra za 10 minut a ujede přitom 3 a 1/3 km.

Slovní úlohy o pohybu Jednotlivé části slovní úlohy na pohyb: Určit, o jaký typ úlohy jde – na střetnutí, nebo na dohánění Náčrt úlohy a zvolení neznámé Sestavení rovnice (lze pomocí tabulky) Vyřešení rovnice Zkouška správnosti pro slovní zadání (ne jako u prostých rovnic L = a P = ) Slovní odpověď

Slovní úlohy o pohybu - úlohy na dohánění Př. 3: V 9.00 hod. vyjel z Prahy po dálnici na Brno kamion rychlostí 70 km/h. Po ujetí 40 km vyrazilo za ním z Prahy vozidlo Celní správy rychlostí 130 km/h. V kolik hodin a jak daleko od Prahy dostihne auto Celní správy kamion? okamžik výjezdu Celní správy náskok 40 km místo dohnání v1 je rychlost kamionu v2 je rychlost Celní správy s1 je dráha kamionu do dohnání s2 je dráha Celní správy do dohnání t2 = t je neznámá doba jízdy Celní správy do dohnání Vyplníme tabulku: s [km] = v.t v [km/h] t [h] kamion Celní spr. - známé rychlosti - neznámé časy - vypočítáme dráhy s1 a s2 Dráhy s1 a s2 dosadíme do rovnice s1 = s2

Slovní úlohy o pohybu - úlohy na dohánění Př. 3: V 9.00 hod. vyjel z Prahy po dálnici na Brno kamion rychlostí 70 km/h. Po ujetí 40 km vyrazilo za ním z Prahy vozidlo Celní správy rychlostí 130 km/h. V kolik hodin a jak daleko od Prahy dostihne auto Celní správy kamion? t2 = t je neznámá doba jízdy Celní správy do dohnání Rovnici s jednou neznámou t vyřešíme: 40 + 70t = 130t 40 = 60t t = 40/60 Řešením rovnice jsme zjistili dobu jízdy Celní správy do dohnání Zkouška správnosti: Dráha kamionu do dohnání: s1 = s2 Dráha Celní správy do dohnání: Odpověď: Celní správa dostihne kamion v 9.40 a ujede přitom 86 a 2/3 km.

Slovní úlohy o pohybu - úlohy na dohánění Př. 3: V 9.00 hod. vyjel z Prahy po dálnici na Brno kamion rychlostí 70 km/h. Po ujetí 40 km vyrazilo za ním z Prahy vozidlo Celní správy rychlostí 130 km/h. V kolik hodin a jak daleko od Prahy dostihne auto Celní správy kamion? Jiný způsob řešení úlohy: okamžik výjezdu Celní správy náskok 40 km = 70∙t = 130∙t místo dohnání v1 je rychlost kamionu v2 je rychlost Celní správy s1 je dráha kamionu do dohnání s2 je dráha Celní správy do dohnání t je neznámá doba jízdy Celní správy do dohnání Dráha s2: s2 = v2∙t → po dosazení známé rychlosti v2 → s2 = 130.t x je dráha, kterou ujede kamion od výjezdu Celní správy do dohnání Tj. za čas t Dráha s1: s1 = 40 + x → s1 = 40 + v1∙t → po dosazení v1 → s1 = 40 + 70.t Dráhy s1 a s2 dosadíme do rovnice s1 = s2

Slovní úlohy o pohybu - úlohy na dohánění Př. 3: V 9.00 hod. vyjel z Prahy po dálnici na Brno kamion rychlostí 70 km/h. Po ujetí 40 km vyrazilo za ním z Prahy vozidlo Celní správy rychlostí 130 km/h. V kolik hodin a jak daleko od Prahy dostihne auto Celní správy kamion? t je neznámá doba jízdy Celní správy do dohnání Rovnici s jednou neznámou t vyřešíme: 40 + 70t = 130t 40 = 60t t = 40/60 Řešením rovnice jsme zjistili dobu jízdy Celní správy do dohnání Zkouška správnosti: Dráha kamionu do dohnání: s1 = s2 Dráha Celní správy do dohnání: Odpověď: Celní správa dostihne kamion v 9.40 hod. a ujede přitom 86 a 2/3 km.

Slovní úlohy o pohybu – příklady k procvičení. Nákladní automobil vyjel z místa A rychlostí 60 km/h. Za 1 hodinu 30 minut za ním vyjelo osobní auto rychlostí 90 km/h. Za kolik minut dožene osobní auto nákladní a v jaké vzdálenosti od místa A? s1 = s2 60(t + 1,5) = 90t t = 3 h

Slovní úlohy o pohybu – příklady k procvičení. Děti se vypravily na kolech na chatu vzdálenou 30 km. vyrazily v 8.30 hodin a jely rychlostí 12 km/h. V 9.00 hodin vyjel za nimi na kole tatínek rychlostí 24 km/h. V kolik hodin se setkali a jak daleko do chaty to bylo? s1 = s2 12(t + 0,5) = 24t t = 0,5 h

Slovní úlohy o pohybu – příklady k procvičení. V 8 hodin vyjel z Chebu nákladní automobil průměrnou rychlostí 32 km/h. V 10 hodin vyjel za ním po stejné trase osobní automobil průměrnou rychlostí 80 km/h. V kolik hodin a v jaké vzdálenosti od Chebu dožene osobní automobil nákladní? s1 = s2 32(t + 2) = 80t

Na závěr ještě jednou Jednotlivé části slovní úlohy na pohyb: Určit, o jaký typ úlohy jde – na střetnutí, nebo na dohánění Náčrt úlohy a zvolení neznámé Sestavení rovnice (lze pomocí tabulky) Vyřešení rovnice Zkouška správnosti pro slovní zadání (ne jako u prostých rovnic L = a P = ) Slovní odpověď