Matematická logika 5. přednáška

Slides:



Advertisements
Podobné prezentace
DOTAZOVACÍ JAZYKY slajdy přednášce DBI006
Advertisements

Pojem FUNKCE v matematice
Množiny Přirozená čísla Celá čísla Racionální čísla Komplexní čísla
Úvod do databázových systémů
Predikátová logika 1. řádu
A5M33IZS – Informační a znalostní systémy Normální formy.
Algebra.
Teorie čísel Nekonečno
Úvod do Teorie množin.
Základní číselné množiny
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
5. Přednáška funkce BRVKA Johann P.G.L. Dirichlet (1805 – 1859)
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Fakulta životního prostředí Katedra informatiky a geoinformatiky
F U N K C E.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Číselným oborem rozumíme číselnou množinu, na které jsou definovány bez omezení početní operace sčítání a násobení, tj. číselný obor je vzhledem k těmto.
Úvod do teoretické informatiky (logika)
Matice.
Funkce Funkce f reálné proměnné x je předpis, který každému x e R přiřadí nejvíc jedno y e R tak, že y = f(x) Definiční obor funkce D je množina všech.
Informatika pro ekonomy II přednáška 10
Predikátová logika.
V matematice existují i seskupení objektů, které nejsou množinami.
Pre-algebra Antonín Jančařík.
Algebra II..
Výroková logika.
Funkce více proměnných.
Lineární zobrazení.
Pre-algebra Antonín Jančařík.
Relace, operace, struktury
Úvod do logiky 5. přednáška
FUNKCE. Závislost délky vegetační sezóny na nadmořské výšce
Množiny.
MATEMATIKA Obsah přednášky Funkce. 3. Limita funkce
Vektorové prostory.
Mlhavost Fuzzy logika, fuzzy množiny, fuzzy čísla
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Teorie množin.
Marie Duží vyučující: Marek Menšík Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia.
Rezoluční metoda 3. přednáška
Výroková logika.
Predikátová logika1 Predikátová logika 1. řádu Teď „logika naostro“ !
Pre-algebra Antonín Jančařík.
Aritmetická posloupnost Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Václav Zemek. Dostupné z Metodického portálu ISSN:
Funkce. Funkce - definice Funkce je zobrazení, které každému číslu z podmnožiny množiny reálných čísel R přiřazuje právě jedno reálné číslo. Funkci značíme.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
MNOŽINY RNDr. Jiří Kocourek. Množina: skupina (souhrn, soubor) nějakých objektů.
Funkce Funkce je zobrazení z jedné číselné množiny do druhé, nejčastěji Buď A a B množiny, f zobrazení. Potom definiční obor a obor hodnot nazveme množiny:
Aritmetická posloupnost Kristýna Zemková, Václav Zemek
ALGEBRAICKÉ STRUKTURY
Kartézský součin Binární relace
Definiční obor a obor hodnot
Matematická logika 4. přednáška
MATEMATIKA Obsah přednášky. Opakování, motivační příklady Funkce.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Aritmetická posloupnost Kristýna Zemková, Václav Zemek
MATEMATIKA Obsah přednášky. Opakování, motivační příklady Funkce.
Matematická logika 5. přednáška
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Informatika pro ekonomy přednáška 8
Funkce více proměnných.
Úvod do teoretické informatiky
MNOŽINY.
MNOŽINY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Databázové systémy Normální formy.
MNOŽINY RNDr. Jiří Kocourek.
Sémantika PL1 Interpretace, modely
Predikátová logika.
Definiční obory. Množiny řešení. Intervaly.
A5M33IZS – Informační a znalostní systémy
Transkript prezentace:

Matematická logika 5. přednáška Teorie množin, Relace, zobrazení, spočetnost a nespočetnost množin Relace, funkce

(Naivní) teorie množin Relace, funkce

Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c} Prvkem množiny může být opět množina, množina nemusí mít žádné prvky (značíme ) ! Příklady: , {a, b}, {b, a}, {a, b, a}, {{a, b}}, {a, {b, a}}, {, {}, {{}}} Množiny jsou identické, právě když mají stejné prvky (princip extenzionality) Značení: x  M – „x je prvkem M“ a  {a, b}, a  {{a, b}}, {a, b}  {{a, b}},   {, {}, {{}}},   {, {}}, ale: x   pro žádné (tj. všechna) x. {a, b} = {b, a} = {a, b, a}, ale: {a, b}  {{a, b}}  {a, {b, a}} Relace, funkce

Množinové operace (vytvářejí z množin nové množiny) Sjednocení: A  B = {x | x  A nebo x  B} čteme: „Množina všech x takových, že x je prvkem A nebo x je prvkem B.“ {a, b, c}  {a, d} = {a, b, c, d} {sudá čísla}  {lichá čísla} = {přirozená čísla} – značíme Nat UiI Ai = {x | x  Ai pro nějaké i  I} Nechť Ai = {x | x = 2.i pro nějaké i  Nat} UiNat Ai = množina všech sudých čísel Relace, funkce

Množinové operace (vytvářejí z množin nové množiny) Průnik: A  B = {x | x  A a x  B} čteme: „Množina všech x takových, že x je prvkem A a současně x je prvkem B.“ {a, b, c}  {a, d} = {a} {sudá čísla}  {lichá čísla} =  iI Ai = {x | x  Ai pro každé i  I} Nechť Ai = {x | x  Nat, x  i} Pak iNat Ai =  Relace, funkce

Vztahy mezi množinami Množina A je podmnožinou množiny B, značíme A  B, právě když každý prvek A je také prvkem B. Množina A je vlastní podmnožinou množiny B, značíme A  B, právě když každý prvek A je také prvkem B a ne naopak. {a}  {a}  {a, b}  {{a, b}} !!! Platí: A  B, právě když A  B a A  B Platí: A  B, právě když A  B = B, právě když A  B = A Relace, funkce

Další množinové operace Rozdíl: A \ B = {x | x  A a x  B} {a, b, c} \ {a, b} = {c} Doplněk (komplement): Nechť A  M. Doplněk A vzhledem k M je množina A’ = M \ A Kartézský součin: A  B = {a,b | aA, bB}, kde a,b je uspořádaná dvojice (záleží na pořadí) Platí: a,b = c,d právě když a = c, b = d Ale: a,b  b,a, ačkoliv {a,b} = {b,a} !!! Zobecnění: A  …  A množina n-tic, značíme také An Relace, funkce

Další množinové operace Potenční množina: 2A = {B | B  A}, značíme také P(A) 2{a,b} = {, {a}, {b}, {a,b}} 2{a,b,c} = {, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}} Kolik prvků má množina 2A ? Je-li |A| počet prvků (kardinalita) množiny A, pak 2A má 2|A| prvků (proto takové značení) 2{a,b}  {a} = {, {a,a}, {b,a}, {a,a, b,a}} Relace, funkce

Grafické znázornění (v universu U): A: S\(PM) = (S\P)(S\M) S(x)  (P(x)  M(x))  S(x)  P(x)  M(x) B: P\(SM) = (P\S)(P\M) P(x)  (S(x)  M(x))  P(x)  S(x)  M(x) C: (S  P) \ M S(x)  P(x)  M(x) D: S  P  M S(x)  P(x)  M(x) E: (S  M) \ P S(x)  M(x)  P(x) F: (P  M) \ S P(x)  M(x)  S(x) G: M\(PS) = (M\P)(M\S) M(x)  (P(x)  S(x))  M(x)  P(x)  S(x) H: U \ (S  P  M) = (U \ S  U \ P  U \ M) (S(x)  P(x)  M(x))  S(x)  P(x)  M(x) S A E C D G B F P M H Relace, funkce

Russellův paradox Je pravda, že každý (tj. libovolným způsobem zadaný) soubor prvků lze považovat za množinu? Normální je, že množina a její prvky jsou objekty různých typů. Tedy „normální množina“ není prvkem sebe sama. Nechť tedy N je množina všech normálních množin: N = {M | M  M}. Otázka: Je N  N ? Ano? Ale pak dle zadání platí, že N je normální, tj. NN. Ne? Ale pak NN, tedy N je normální a patří do N, tj. NN. Obě odpovědi vedou ke sporu, jedná se o „špatné zadání“, které nezadává takový soubor prvků, jenž bychom mohli považovat za množinu. Relace, funkce

Relace Relace mezi množinami A, B je podmnožina Kartézského součinu A  B. Kartézský součin A  B je množina všech uspořádaných dvojic a, b, kde aA, bB (Binární) relace R2 na množině M je podmnožina Kartézského součinu M  M: R2  M  M n-ární relace Rn na množině M: Rn  M ... M n krát Relace, funkce

Relace Pozor: dvojice a,b  b,a, ale množina {a,b} = {b,a} a, a  a, ale {a,a} = {a} U n-tic záleží na pořadí, prvky se mohou opakovat, na rozdíl od množin Notace: a,b  R značíme také prefixně R(a,b), nebo infixně a R b. Např. 1  3. Relace, funkce

Relace - Příklad: Binární relace na N: < (ostře menší) {0,1,0,2,0,3,…,1,2,1,3, 1,4, …, 2,3,2,4,…,3,4,…,5,7,…,115,119, .…} Ternární relace na N: {0,0,0,1,0,1,1,1,0,…, 2,0,2, 2,1,1,2,2,0, …, 3,0,3, 3,1,2, 3,2,1,3,3,0,…,115,110,5, .…} množina trojic přirozených čísel takových, že 3. číslo je rozdíl 1. číslo minus 2. číslo Relace „adresa osoby“: {Jan Novák, Praha 5, Bellušova 1831, Marie Duží, Praha 5, Bellušova 1827,...,} Relace, funkce

Funkce (zobrazení) n-ární funkce F na množině M je speciální zprava jednoznačná (n+1)-ární relace F  M ... M: (n+1) x a bc ([F(a,b)  F(a,c)]  b=c) Parciální F: ke každé n-tici prvků aM...M existuje nanejvýš jeden prvek bM. Značíme F: M ... M  M, místo F(a,b) píšeme F(a)=b. Množinu M ... M nazýváme definiční obor (doména) funkce F, množinu M pak obor hodnot (range). Relace, funkce

Funkce (zobrazení) Příklad: Relace na N {1,1,1,2,1,2, 2,2 ,1, …, 4,2,2, …, 9,3,3, …, 27,9,3, .…} je parciální funkce dělení beze zbytku. Také relace minus na N (viz předchozí slide) je na N parciální funkcí: např. dvojice 2,4 nemá v N obraz. Aby byla totální, museli bychom rozšířit její definiční obor na celá čísla. Relace, funkce

Funkce (zobrazení) Jako interpretace funkčních symbolů formulí PL1 používáme pouze totální funkce: Totální funkce F: A  B: Ke každému prvku aA existuje právě jeden prvek bB takový, že F(a)=b: a b F(a)=b  abc [(F(a)=b  F(a)=c)  b=c] Zavádíme někdy speciální kvantifikátor ! s významem „existuje právě jedno“ a píšeme: a !b F(a)=b Relace, funkce

Funkce (zobrazení) Příklady: Relace + {0,0,0, 1,0,1, 1,1,2, 0,1,1, …} je na N (totální binární) funkce. Každým dvěma číslům přiřadí právě jedno, jejich součet. Místo 1,1,2  + píšeme 1+1=2 Relace  není funkce: x y z [(x  y)  (x  z)  (y  z)] Relace {0,0, 1,1, 2,4, 3,9, 4,16, …} je na N totální funkce druhá mocnina (x2) Relace, funkce

Surjekce, injekce, bijekce Zobrazení f : A  B je surjekce (zobrazení A na B), jestliže k libovolnému b  B existuje a  A takový, že f(a)=b. b [B(b)  a (A(a)  f(a)=b)]. Zobrazení f : A  B je injekce (prosté zobrazení A do B), jestliže pro všechna aA, bA taková, že a  b platí, že f(a)  f(b). a b [(A(b)  A(a)  (a  b))  (f(a)  f(b))]. Zobrazení f : A  B je bijekce (prosté zobrazení A na B), jestliže f je surjekce a injekce. Relace, funkce

Funkce (zobrazení) Příklad: surjekce injekce bijekce {1 2 3 4 5} {2 3 4 } {1 2 3 4 5} { 2 3 4 } {1 2 3 4 5} {1 2 3 4 5} Existuje-li mezi množinami A, B bijekce, pak říkáme, že mají stejnou kardinalitu (počet prvků). Relace, funkce

Kardinalita, spočetné množiny Množina A, která má stejnou kardinalitu jako množina N přirozených čísel, se nazývá spočetná. Příklad: množina sudých čísel S je spočetná. Prosté zobrazení f množiny S na N je dáno např. předpisem: f(n) = 2n. Tedy 0  0, 1  2, 2  4, 3  6, 4  8, … Jeden z paradoxů Cantorovy teorie množin: S  N (vlastní podmnožina) a přitom počet prvků obou množin je stejný: Card(S) = Card(N)! Relace, funkce

Kardinalita, spočetné množiny Množina racionálních čísel R je rovněž spočetná. Důkaz: Provedeme ve dvou krocích. Card(N)  Card(R), neboť každé přirozené číslo je racionální: N  R. Sestrojíme zobrazení N na R (tedy surjekci N na R), čímž dokážeme, že Card(R)  Card(N): 1 2 3 4 5 6 … 1/1 2/1 1/2 3/1 2/2 1/3 … Ale v tabulce se nám racionální čísla opakují, tedy toto zobrazení není prosté. Nicméně, žádné racionální číslo nevynecháme, je to zobrazení na R (surjekce). Proto je Card(N) = Card(R). 1/1 1/2 1/3 1/4 1/5 1/6 … 2/1 2/2 2/3 2/4 2/5 2/6 3/1 3/2 3/3 3/4 3/5 3/6 4/1 4/2 4/3 4/4 4/5 4/6 5/1 5/2 5/3 5/4 5/5 5/6 6/1 6/2 6/3 6/4 6/5 6/6 Relace, funkce

Kardinalita, nespočetné množiny Existují však nespočetné množiny: nejmenší z nich je množina reálných čísel R Již v intervalu 0,1 je reálných čísel více než je všech přirozených, ale stejně mnoho jako všech R! Cantorův diagonální důkaz: Kdyby bylo v tomto intervalu čísel R spočetně mnoho, pak by šly uspořádat do posloupnosti první (1.), druhé (2.), třetí (3.),…, a každé z nich je tvaru 0,i1i2i3…, kde i1i2i3… je desetinný rozvoj čísla Racionální čísla mají desetinný rozvoj konečný, iracionální čísla jej mají nekonečný. V posloupnosti desetinných míst i1i2i3… přičteme ke každému n-tému číslu in v jeho rozvoji číslo 1. Dostaneme číslo, které v původní uspořádané posloupnosti nebylo.) – viz další snímek Relace, funkce

Nové číslo, které v tabulce není: 0,i11+1 i22+1 i33+1 i44+1 i55+1 … Cantorův diagonální důkaz nespočetnosti reálných čísel v intervalu 0,1. 1 2 3 4 5 6 7 1 i11 i12 i13 i14 i15 i16 i17 2 i21 i22 i23 i24 i25 i26 i27 3 i31 i32 i33 i34 i35 i36 i37 4 i41 i42 i43 i44 i45 i46 i47 5 i51 i52 i53 i54 i55 i56 i57 …. Nové číslo, které v tabulce není: 0,i11+1 i22+1 i33+1 i44+1 i55+1 … Relace, funkce