Vzájemná poloha přímky a roviny

Slides:



Advertisements
Podobné prezentace
Stereometrie - Vzdálenosti, odchylky
Advertisements

STEREOMETRIE Metrické úlohy – odchylky, vzdálenosti Odchylka přímek
Volné rovnoběžné promítání – průsečík přímky tělesem
Průsečík přímky a roviny
STEREOMETRIE metrické vlastnosti
autor: RNDr. Jiří Kocourek
autor: RNDr. Jiří Kocourek
autor: RNDr. Jiří Kocourek
(polohové vlastnosti) POZNÁMKY ve formátu PDF
Metodický list Materiál je určen pro 4. ročník 6letého Materiál je určen pro 4. ročník 6letého a 2. ročník 4letého studia, lze ho využít při opakování.
Stereometrie Řezy hranolu I VY_32_INOVACE_M3r0108 Mgr. Jakub Němec.
Základní věty stereometrické 1.část
Autor: Mgr. Svatava Sekerková
Základní vztahy mezi body, přímkami a rovinami
STEREOMETRIE polohové vlastnosti - incidence
SPŠ stavební a Obchodní akademie, Kladno, Cyrila Boudy 2954 EU peníze školám CZ.1.07/1.5.00/ Vzájemná poloha přímky a roviny Autor: Mgr. Svatava.
Vzájemná poloha dvou přímek
Porovnávání přímek v rovině
„Výuka na gymnáziu podporovaná ICT“.
Volné rovnoběžné promítání
Stereometrie Užití řezů těles VY_32_INOVACE_M3r0111 Mgr. Jakub Němec.
Vzdálenost bodu od přímky
Gymnázium, Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Hodonín Vzájemná poloha přímek, rovin v prostoru.
Digitální učební materiál
Polohové vlastnosti – vzájemná poloha rovin Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK, registrační číslo CZ.1.07/1.5.00/
Elektronická učebnice - I
Bod, přímka, rovina, prostor
MATEMATIKA Planimetrie - úvod.
Řešení polohových konstrukčních úloh
Užití řezů těles - procvičování
autor: RNDr. Jiří Kocourek
Vzájemná poloha tří rovin
Vzdálenost rovnoběžných rovin
STEREOMETRIE. = prostorová geometrie, geometrie v prostoru  část M zkoumající vlastnosti prostor. útvarů  vychází z tzv. axiómů, využívá věty Axióm.
Stereometrie Odchylky rovin VY_32_INOVACE_M3r0116 Mgr. Jakub Němec.
Stereometrie Řezy jehlanů VY_32_INOVACE_M3r0110 Mgr. Jakub Němec.
SPŠ stavební a Obchodní akademie, Kladno, Cyrila Boudy 2954 EU peníze školám CZ.1.07/1.5.00/ Vzdálenost rovnoběžných přímek a rovin Autor: Mgr.
Vzdálenost bodu od roviny
POZNÁMKY ve formátu PDF
Vzájemná poloha tří rovin
SPŠ stavební a Obchodní akademie, Kladno, Cyrila Boudy 2954 EU peníze školám CZ.1.07/1.5.00/ Základní vztahy mezi body, přímkami a rovinami Autor:
Stereometrie Odchylky přímek VY_32_INOVACE_M3r0114 Mgr. Jakub Němec.
Vzájemná poloha dvou rovin
Stereometrie Kolmost přímek a rovin Mgr. Jakub Němec
Stereometrie Řezy hranolu II VY_32_INOVACE_M3r0109 Mgr. Jakub Němec.
Vzdálenost rovnoběžných přímek
Kolmost ve stereometrii Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK, registrační číslo CZ.1.07/1.5.00/ s názvem.
Polohové vlastnosti – poloha přímky a roviny Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK, registrační číslo CZ.1.07/1.5.00/
Metrické vlastnosti kolmost přímek a rovin
Vzájemná poloha dvou rovin
Autor: Mgr. Svatava Sekerková
Vzájemná poloha dvou přímek v prostoru
Řezy v axonometrii Duben 2015.
Vzájemná poloha dvou geometrických útvarů – procvičování
STEREOMETRIE Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
STEREOMETRIE základní pojmy Blan ka Wagnerová Úvod do studia DG.
ŘEZ HRANOLU ROVINOU OB21-OP-STROJ-KOG-MAT-S
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Množina bodů dané vlastnosti
Matematika Vzájemná poloha přímek a rovin
Vzájemná poloha tří rovin
Základní vztahy mezi body, přímkami a rovinami
Základní škola T. G. Masaryka, Bojkovice, okres Uherské Hradiště
MATEMATIKA Odchylka přímek a rovin 1.
Řešení polohových konstrukčních úloh
Průsečík přímky s rovinou
Množina bodů dané vlastnosti
Konstruktivní úlohy na rotačních plochách
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633
Množina bodů dané vlastnosti
Transkript prezentace:

Vzájemná poloha přímky a roviny Stereometrie Vzájemná poloha přímky a roviny VY_32_INOVACE_M3r0104 Mgr. Jakub Němec

Vzájemná poloha přímky a roviny Podobně jako v předchozí lekci bude rozhodovat o vzájemné poloze jednorozměrného a dvourozměrného geometrického útvaru počet společných bodů. Pro přímku a rovinu existují dvě vzájemné polohy: Přímka a rovina nemají žádný společný bod – jsou rovnoběžné. Přímka a rovina mají jeden společný bod – jsou různoběžné. Přímka a rovina mají nekonečně společných bodů (tzn. přímka je součástí roviny, popř. přímka leží v rovině) – jsou rovnoběžné.

Příklady rovnoběžné přímky a roviny Pokud chceme dokázat, že rovina a přímka, která v rovině neleží, jsou rovnoběžné, musíme najít v dané rovině alespoň jednu přímku, která je rovnoběžná se zadanou přímou.

Mějme v krychli ABCDEFGH rovinu ABC a přímku EF. V tomto případě je snadné rovnoběžné přímky najít (pro zajímavost je jich nekonečně mnoho). My použijeme pouze ty přímky, které lze pojmenovat pomocí vrcholů krychle.

Vzhledem ke skutečnosti, že naše přímka EF je zároveň hranou krychle, je zřejmé, že její rovnoběžky v dolní podstavě musí být přímky AB nebo CD (žlutě). Jak již bylo naznačeno výše, rovnoběžek je nekonečně mnoho (některé z nich vyznačeně červeně).

Druhý příklad bude o něco složitější. Mějme v krychli ABCDEFGH úhlopříčnou rovinu BDH a přímku AE.

Naši přímku tvoří opět hrana krychle, proto je opět dostačující najít rovnoběžné hrany, které zároveň náleží rovině BDH. Hledanými přímkami jsou přímky BF a DH (žlutě). I v tomto případě existuje nekonečně mnoho rovnoběžných přímek (některé z nich červeně).

Na závěr části o rovnoběžnosti se podívejme na tuto situaci: Rovina BDH a přímka KL v krychli ABCDEFGH, kde body K a L jsou po řadě středy hran FG a GH.

Rovnoběžné přímky s přímkou KL lze označit pomocí vrcholů BD a FH (přímky jsou rovnoběžné na základě podobnosti trojúhelníku FGH a KGL). Další rovnoběžky budou značeny opět červeně.

Příklad přímky ležící v rovině Má-li přímka s rovinou společné alespoň dva různé body, pak tato přímka leží v dané rovině. Všechny body, které náleží přímce, jsou zároveň i body roviny.

Pro případ této rovnoběžnosti si ukážeme pouze jeden příklad, který dostatečně demonstruje dříve uvedené poznatky. Mějme v krychli ABCDEFGH rovinu dolní podstavy ABC a přímku KS, kde K leží na hraně BC a S je střed úhlopříček dolní podstavy. Jako důkaz, že přímka KS leží v rovině nám postačí dokázat, že body K a S leží v podstavě, což je zřejmé.

Příklad různoběžné přímky a roviny Jak je uvedeno výše, pokud mají přímka a rovina společný pouze jeden bod (průsečík), jsou různoběžné. Proto nám jako důkaz jejich různoběžnosti postačí nalézt tento bod a prokázat, že je jediný.

Mějme v krychli ABCDEFGH rovinu dolní podstavy ABC a přímku EC. Již z pojmenování jednotlivých útvarů je zřejmé, že mají jeden společný bod. Z obrázku je patrné, že více společných bodů neexistuje.

V druhém příkladu bude již obtížnější daný průsečík nalézt. Mějme v krychli ABCDEFGH úhlopříčnou rovinu ACE a tělesovou úhlopříčku BH. Díky naší znalosti krychle víme, že tělesové úhlopříčky se protínají v jednom bodě (označme jej S). Za předpokladu, že tělesová úhlopříčka CE leží v naší rovině (vyplývá již z pojmenování roviny) můžeme tedy tvrdit, že se rovina a přímka protnou právě v tomto bodě.

Na závěr si uvedeme příklad, ve kterém budeme později umět geometricky určit průsečík P přímky a roviny pomocí průsečnice rovin (přímka společná pro dvě různoběžné roviny). Mějme v krychli ABCDEFGH rovinu AFH a přímku EC. Na prvním obrázku vidíme přímku procházející rovinou.

Na druhém obrázku je vidět rovinu kolem přímky a průsečnici rovin.

Úkol závěrem Mějme rovinu BCF v krychli ABCDEFGH. Určete všechny přímky procházející bodem D, které jsou zároveň: a) různoběžné s rovinou BCF b) rovnoběžné s rovinou BCF. Mějme přímku BF v krychli ABCDEFGH. Určete pomocí vrcholů krychle všechny roviny procházející bodem D, které jsou: a) rovnoběžné s přímkou BF b) různoběžné s přímkou BF.

Zdroje Literatura: POMYKALOVÁ, Eva. Matematika pro gymnázia - Stereometrie. 1. vydání. Praha: Prometheus, 1995, 223 s. ISBN 80-7196-004-7. Obrázky byly vytvořeny v programu Malování.