Lomené algebraické výrazy

Slides:



Advertisements
Podobné prezentace
Lomené algebraické výrazy
Advertisements

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Tercie Rovnice Rovnice – lineární rovnice postup na konkrétním příkladu.
2.3 ROZKLAD VÝRAZŮ NA SOUČIN Mgr. Petra Toboříková.
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.4.00/ AUTOR:Mgr. Vladimír.
Elektronické učební materiály – II. stupeň Matematika 7 Autor: Mgr. Zuzana Vimrová 1. Kolik zbyde?
Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu:CZ.1.07/1.4.00/ Šablona:III/2 Inovace a zkvalitnění výuky.
Mocniny, odmocniny, úpravy algebraických výrazů
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU: CZ.1.07/1.4.00/ AUTOR: Mgr. Vladimír.
Lomené algebraické výrazy
Kombinatorika, pravděpodobnost, statistika
Název školy: Základní škola Městec Králové Autor: Mgr. Věra Oupická
Lomené algebraické výrazy
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Pojem zlomek a jeho zápis.
ZLOMKY II. – opakování pojmů a postupů při početních operacích
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
Nácvik řešení rezistorové sítě
Lomené algebraické výrazy
Poměr Co je poměr. Změna v daném poměru..
ZLOMKY I. – opakování pojmů a postupů při početních operacích
Zlomky Složené zlomky..
Vy_32_Inovace_11_Krácení lomených výrazů
Poměr v základním tvaru.
Násobení výrazů – 2 (odstranění závorky)
Násobení lomených výrazů
2.2 Kvadratické rovnice.
Zlomky Čísla smíšená..
* Zlomky a smíšená čísla Matematika – 7. ročník *
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
ZÁKLADNÍ ŠKOLA, JIČÍN, HUSOVA 170 Číslo projektu
* Složené zlomky Matematika – 7. ročník *
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Kvadratické nerovnice
Lomené algebraické výrazy
Vytvořeno v rámci v projektu „EU peníze školám“
Společný dělitel … a jak ho najít.
Název projektu: Podpora výuky v technických oborech
Lomené algebraické výrazy
Rovnice základní pojmy.
8 SČÍTÁNÍ ZLOMKŮ.
11 DĚLENÍ ZLOMKŮ.
Lomené algebraické výrazy
Zlomky Násobení zlomků..
Zlomky Sčítání zlomků..
3. přednáška Laplaceova transformace
Algebraické výrazy: lomené výrazy
Lomené výrazy (2) Podmínky řešitelnost
Lomené výrazy (8) Dělení
Poměr v základním tvaru.
Lomené algebraické výrazy
Společný jmenovatel lomených výrazů
Rovnice s neznámou ve jmenovateli
Dělení lomených výrazů
NÁZEV: VY_32_INOVACE_04_06_M9_Hanak TÉMA: Lomené výrazy
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU: CZ.1.07/1.4.00/ AUTOR: Mgr. Vladimír.
Početní operace se složenými zlomky
Mocniny Násobení a dělení mocnin se stejnými základy
Lomené výrazy (9) Složené lomené výrazy
Sčítání lomených výrazů
Rovnice opakování Výukový materiál pro 9.ročník
Dělitelnost přirozených čísel
Průměr
Pojem zlomek a jeho zápis.
MATEMATIKA Lineární rovnice s neznámou ve jmenovateli.
VÝRAZY Centrum pro virtuální a moderní metody a formy vzdělávání na
VY_32_INOVACE_Pel_I_08 Výrazy lomené – podmínky2
Dělitelnost přirozených čísel
Lomené algebraické výrazy
Transkript prezentace:

Lomené algebraické výrazy Sčítání lomených výrazů

Sčítání lomených výrazů. Sčítání lomených výrazů provádíme podobně jako sčítání zlomků, kde lze podle jmenovatelů rozlišit čtyři základní typy příkladů 1) Stejní jmenovatelé 2) Různí jmenovatelé, jeden násobkem druhého 3) Různí jmenovatelé, navzájem nesoudělní 4) Různí jmenovatelé, navzájem soudělní

Sčítání lomených výrazů. Lomené výrazy se stejnými jmenovateli sčítáme tak, že sečteme jejich čitatele a jmenovatele opíšeme. Sčítání zlomků Podobně postupujeme i při sčítání lomených výrazů.

Sčítání lomených výrazů. Lomené výrazy s různými jmenovateli sčítáme tak, že jmenovatele převedeme na společného jmenovatele a takto upravené lomené výrazy sečteme. Sčítání zlomků Podobně postupujeme i při sčítání lomených výrazů.

Sčítání lomených výrazů. Lomené výrazy s různými jmenovateli sčítáme tak, že jmenovatele převedeme na společného jmenovatele a takto upravené lomené výrazy sečteme. Sčítání zlomků Podobně postupujeme i při sčítání lomených výrazů.

Sčítání lomených výrazů. Lomené výrazy s různými jmenovateli sčítáme tak, že jmenovatele převedeme na společného jmenovatele a takto upravené lomené výrazy sečteme. Sčítání zlomků Podobně postupujeme i při sčítání lomených výrazů.

Sčítání lomených výrazů. Jak již bylo řečeno, při sčítání lomených výrazů potřebujeme především převést výrazy na společného jmenovatele. Společného jmenovatele výrazů musíme nejdříve zjistit. K tomu opět pomůže rozložení jmenovatelů na součin v základním tvaru. Příklad: Sečtěte Nejprve určíme pomocí rozkladu společného jmenovatele. Společný jmenovatel obsahuje všechny činitele z obou rozkladů, ale činitele, který se vyskytuje v obou jmenovatelích, vezmeme do společného jmenovatele pouze jednou.

Sčítání lomených výrazů. Příklad: Sečtěte Nyní již oba lomené výrazy sečteme Ve výsledku lze ještě krátit x

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Sčítání lomených výrazů – příklady k procvičení. Sečtěte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Závěr Uvádění podmínek, pro které mají lomené výrazy smysl, jsou nezbytnou a nutnou součástí řešení, i když to v zadání příkladu nemusí být výslovně uvedeno!