25. 03. 20121 FIFEI-04 Mechanika – dynamika soustavy hmotných bodů a tuhých těles.

Slides:



Advertisements
Podobné prezentace
MF kurz 2010/2011 – úvodní informace … www stránka kurzu … zde lze stáhnout tuto prezentaci.
Advertisements

Fyzika I Marie Urbanová Fyzika I-2016, přednáška 1 1.
Vybrané snímače pro měření průtoku tekutiny Tomáš Konopáč.
Mechanické vlastnosti kapalin - opakování Vypracovala: Mgr. Monika Schubertová.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková Název prezentace (DUMu): 7. Kinematika – rozlišování pohybů a jejich skládání v prakt. úlohách.
Fyzika pro lékařské a přírodovědné obory Ing. Michal ŠunkaZS – Dynamika hmotného bodu.
Mechanika II Mgr. Antonín Procházka. Co nás dneska čeká?  Mechanická práce, výkon, energie, mechanika tuhého tělesa.  Mechanická práce a výkon, kinetická.
KVANTOVÁ MECHANIKA. Kvantová mechanika popisuje pohyb v mikrosvětě vlnový charakter a pravděpodobnost výskytu částice rozdílné rovnice a zákony od klasické.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková Název prezentace (DUMu): 14. Pohyby těles v gravitačním a tíhovém poli Země Název sady: Fyzika.
Jednoduché stroje Vypracovali: Daniel Mikeš Štěpán Kouba Třída: 1.A Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České.
VY_52_INOVACE_02_Práce, výkon, energie Základní škola Jindřicha Pravečka Výprachtice 390 Reg.č. CZ.1.07/1.4.00/ Autor: Bc. Alena Machová.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Název školy: ZŠ Klášterec nad Ohří, Krátká 676 Autor: Mgr. Zdeňka Horská Název materiálu: VY_32_INOVACE_12_01_ Vzájemné působení těles Číslo projektu:
Hydrostatika, hydrodynamika Přípravný kurz Dr. Jana Mattová 1.cuni.cz.
Skládání rovnoběžných a různoběžných sil-souhrnná cvičení
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková
9.1 Magnetické pole ve vakuu 9.2 Zdroje magnetického pole
2.2. Dynamika hmotného bodu … Newtonovy zákony
Dynamika hmotného bodu
NÁZEV ŠKOLY: S0Š Net Office, spol. s r.o, Orlová Lutyně
2.3 Mechanika soustavy hmotných bodů … Srážky
Síla a skládání sil Ing. Jan Havel.
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Lubomíra Moravcová Název materiálu:
Střední odborná škola a Gymnázium Staré Město Číslo projektu
8.1 Aritmetické vektory.
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
Matematicko-fyzikální projekt Vektory
Základní jednorozměrné geometrické útvary
Základní škola a Mateřská škola Bílá Třemešná, okres Trutnov
Výukový materiál zpracován v rámci projektu
Projekt: Cizí jazyky v kinantropologii - CZ.1.07/2.2.00/
Název školy: ZŠ Štětí, Ostrovní 300 Autor: Francová Alena
KAŽDÁ POKROČILÁ TECHNOLOGIE JE K NEROZEZNÁNÍ OD MAGIE
Fyzika Účinek síly na těleso otáčené kolem pevné osy. Páka.
KINETICKÁ TEORIE STAVBY LÁTEK.
SŠ-COPT Uherský Brod Mgr. Anna Červinková 16. Jednoduché stroje
Základní škola T. G. Masaryka, Bojkovice, okres Uherské Hradiště
Základní škola T. G. Masaryka, Bojkovice, okres Uherské Hradiště
Název projektu: ZŠ Háj ve Slezsku – Modernizujeme školu
Opakování 3 Název školy: ZŠ Štětí, Ostrovní 300 Autor: Francová Alena
(a s Coriolisovou silou)
Steinerova věta (rovnoběžné osy)
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
TLAK PLYNU Z HLEDISKA MOLEKULOVÉ FYZIKY.
Fyzika 7.ročník ZŠ Otáčivé účinky sil Creation IP&RK.
Speciální teorie relativity
7 Soustava HB, Tuhé těleso NMFy 160
Otáčivý účinek síly.
Fyzika 7.ročník ZŠ Newtonovy pohybové zákony Creation IP&RK.
Soustava částic a tuhé těleso
DUM:VY_32_INOVACE_IX_1_19 Páka
BD01 Základy stavební mechaniky
Vzájemné silové působení těles
Pohybové zákony Vyjmenuj Newtonovy pohybové zákony
Mechanika IV Mgr. Antonín Procházka.
VLASTNOSTI KAPALIN
FFZS-02 Mechanika – kinematika a dynamika hmotného bodu
Skládání rovnoběžných a různoběžných sil-souhrnná cvičení
Základní škola Zlín, Nová cesta 268, příspěvková organizace
2.2. Dynamika hmotného bodu … Newtonovy zákony
Otáčivý účinek síly. Páka.
Moment hybnosti Moment hybnosti L je stejně jako moment síly určen jako součin velikosti ramene d a příslušné veličiny (tj. v našem případě hybnosti p).
1. Homogenní gravitační pole - VRHY
Teorie chyb a vyrovnávací počet 2
MECHANIKA TUHÉHO TĚLESA
2. Centrální gravitační pole
Tečné a normálové zrychlení
KMT/MCH2 – Mechanika 2 pro učitele
Měření tíhového zrychlení
Zákon setrvačnosti VY_32_INOVACE_FYZ_1_28
Transkript prezentace:

FIFEI-04 Mechanika – dynamika soustavy hmotných bodů a tuhých těles. Doc. Miloš Steinhart, UPCE , ext. 6029

Hlavní body Blíže k realitě : soustava (systém) hmotných bodů a dokonale tuhé těleso Moment hybnosti, moment síly Dynamika rotačních pohybů Druhá impulsová věta Hmotný střed, moment setrvačnosti a Steinerova věta Rozklad silového působení na translační a rotační u dokonale tuhého tělesa

Moment hybnosti – základní zákony zachování Z dynamiky hmotného bodu je zřejmé, že je-li výslednice působících sil nulová, zachovává hmotný bod svoji hybnost a kinetickou energii. Přímočarý pohyb je možné chápat jako okamžitou rotaci kolem počátku a definovat rotační pohybový stav hmotného bodu – moment hybnosti: Tato veličina se zachovává. K zachování dochází i při působení nenulové síly, pokud je kolineární s průvodičem, například centrální síla při pohybu planet.

Dynamika rotačních pohybů I Síla uvádí tělesa do translačních i rotačních pohybů, ale u rotačních je důležité jakým způsobem působí. Na pevné nehmotné vodorovné tyčce je hmotný bod m ve vzdálenosti r od vodorovného pantu, kolem kterého se tyčka může volně otáčet. Ve vzdálenosti  od tohoto pantu se snažíme působit silou F, abychom vykompenzovali tíhu hmotného bodu a tyčka byla v rovnováze.

Dynamika rotačních pohybů II Naše síla vyrovnává svislou tíhu, tedy k rovnováze přispěje pouze její svislá složka, kolmá k (vodorovné) tyčce : F k = Fsin(  ). Experimentálně lze ověřit, že: Tíha hmotného G = mg bodu je podepřena současně naší silou a silou v pantu : G = F 0 + F k. Rozložení tíhy je nepřímo úměrné vzdálenosti podpůrných sil : F 0 r = F k (  - r). Tedy : G r = F k 

Dynamika rotačních pohybů III Je patrné, že pro otáčivý účinek síly je kromě její velikosti rozhodující i její vzdálenost od osy otáčení a její směr vzhledem ke směru průvodiče osa – působiště. Souhrnně je otáčivý účinek popsán momentem síly : počátek je v průsečíku osy a roviny otáčení.

Dynamika rotačních pohybů IV Předpokládejme konstantní moment síly. Potom s použitím druhého Newtonova zákona můžeme psát : Moment síly je tedy roven časové změně momentu hybnosti. Toto je nejobecnější formulace druhého Newtonova zákona pro rotaci.

Dynamika rotačních pohybů V V případě, že těleso má konstantní hmotnost a geometrii, je výhodné zavést moment setrvačnosti vzhledem k příslušné ose otáčení : J =  m i r 2 i a psát : Význam tohoto vztahu ilustrujme na příkladu podobnému příkladu předchozímu :

Dynamika rotačních pohybů VI Hmotný bod m, leží na pevné nehmotné tyčce ve vzdálenosti r od osy otáčení, nyní svislé : Síla F působí ve vzdálenosti  od této osy a leží ve vodorovné rovině a opět svírá s tyčkou úhel  : S využitím předchozího : F k  = F sin(  )  = r m a = r 2 m . Jsou-li na tyčce dva hmotné body, můžeme ukázat aditivnost momentu setrvačnosti : F sin(  )  = r 1 m 1 a 1 + r 2 m 2 a 2 = (r 2 1 m 1 + r 2 2 m 2 ) .

Druhá věta impulsová I Obdobně můžeme uvažovat o otáčivém účinku síly na i-tý hmotný bod vzhledem k libovolnému pevnému bodu O:

Druhá věta impulsová II Celkový moment hybnost systému je vektorový součet všech momentů hybností uvažovaných k témuž pevnému bodu O: Při sčítání přes celý systém opět využíváme důsledku zákona akce a reakce.

Druhá věta impulsová III Časová změna celkového momentu hybnosti je rovna výslednici momentů vnějších sil, vzhledem k pevnému bodu O:

Důsledky impulsových vět Je-li výslednice vnějších sil, působících na systém nulová, zachovává se celková hybnost systému. Je-li výslednice momentů vnějších sil, působících na systém nulová, zachovává se celkový moment hybnosti systému. Vnější síly mají obecně translační i rotační účinek. Je důležité, jak působí vzhledem k hmotnému středu.

Příklad – ráz těles I Centrální ráz – hmotné body jsou kuličky, na které nepůsobí žádné vnější síly. Před srážkou se (proti sobě) pohybují dvě kuličky m i, rychlostmi v i. Po srážce mají rychlosti u i. Podle I.VI se vždy zachovává celková hybnost: Ráz se odehrává mezi dvěma mantinely – dokonale nepružný u 1 = u 2 = u, kdy se tělesa po rázu pohybují společně, část mechanické energie se mění na jinou formu: Dokonale pružný – zachovává se i celková kinetická energie. Přibude podmínka :

Ráz těles II po vydělení rovnic dojdeme k řešení

Pohyby s proměnnou hmotností Raketový pohyb I Uvažujme, že těleso s hmotností m a rychlostí se srazí s tělesem dm a a spojí se :

Pohyby s proměnnou hmotností Raketový pohyb II Ke změně rychlosti může dojít působením vnější síly nebo přijímáním nebo vysíláním hmotnosti s jistou nenulovou relativní rychlostí.přijímánímvysíláním Můžeme-li předpokládat přímočarý pohyb :

Dokonale tuhé těleso I V předešlých částech, kde jsme zaváděli veličiny důležité pro rotaci, například moment síly, jsme potřebovali fiktivní tělesa typu pevných nehmotných tyček, které přenášely sílu a moment síly. Jde o důležitou kategorii těles, kterým se říká dokonale tuhá. Znamená to, že žádným působením se nemohou měnit vzdálenosti mezi hmotnými body, z nichž jsou složena, tedy takový systém tedy není možné deformovat.

Dokonale tuhé těleso II V praxi to znamená, že deformace, které jsou u reálných materiálů přítomny vždy, lze z hlediska řešení daného problému zanedbat. U takových těles je snadné rozložení vnějšího účinku na translační a rotační a závisí na dodatečných podmínkách. Podobně, moment setrvačnosti se během rotace nemění a má tedy jednoznačný význam.význam

Dokonale tuhé těleso III Ani translační ani rotační silové působení na dokonale tuhé těleso se nezmění když: do libovolného bodu umístíme dvě síly stejně velké, ale opačně orientované. libovolnou sílu posuneme kamkoli po přímce jejího působení.  na libovolnou přímku umístíme dvě síly stejně velké, ale opačně orientované.

Dokonale tuhé těleso IV Účinek síly, která působí v přímce procházející těžištěm, je čistě translační Účinek dvojice stejných, opačně orientovaných sil, působících v libovolných paralelních přímkách, je čistě rotační.

Dokonale tuhé těleso V Steinerova věta I U tuhých těles je výhodné popsat rozložení hmotnosti pomocí momentu setrvačnosti : J =  m i r 2 i Z vlastnosti těžiště plyne Steinerova věta : kde J a je moment setrvačnosti vůči ose, vzdálené a od těžiště a J t je m.s. vůči ose procházející těžištěm, která je s ní paralelní

Dokonale tuhé těleso VI Steinerova věta II Polohový vektor i-tého bodu lze vyjádřit pomocí jeho polohového vektoru v těžišťové soustavě : Tedy : Prostřední člen je z vlastnosti těžiště roven nule.

Dokonale tuhé těleso VII Steinerova věta III Je patrné, že ze všech paralelních os je moment setrvačnosti nejmenší vůči ose procházející těžištěm.těžištěm Je-li výslednice všech momentů sil, které působí na DTT nulová, rotuje těleso rovnoměrně (s konstantní  ) kolem osy, procházející těžištěm nebo je v klidu.

Dokonale tuhé těleso VIII Statika Je-li výslednice všech sil, působících na DTT nulová, pohybuje se těleso rovnoměrně nebo je v klidu. Hledáním podmínek, za kterých zůstávají tělesa v klidu se zabývá statika. Obecně musí být vykompenzovány všechny síly a všechny momenty sil, a to každá jejich složka.

Dokonale tuhé těleso IX Kinetická energie Lze ukázat, že celková kinetická energie dokonale tuhého tělesa se obecně skládá z translační a rotační složky:

Dokonale tuhé těleso X Porovnání translace a rotace Odpovídající nejobecnější vztahy pro dynamiku translačního a rotačního pohybu jsou : Pokud se u těles nemění hmotnost ani její rozložení, má smysl zavést moment setrvačnosti: J =  m i r 2 i a vztahy zjednodušit.

Dokonale tuhé těleso XI hmotnost ~ moment setrvačnosti Speciální vztahy pro rotační pohyb obsahují moment setrvačnosti na místech, kde v analogických vztazích pro pohyb translační vystupuje hmotnost :hmotnost

Skalární součin Ať Definice I (ve složkách) Definice II Skalární součin je součin velikosti jednoho vektoru krát průmět velikosti vektoru druhého do jeho směru. ^

Příklad dvě závaží na kladce I Na válcové kladce o hmotnosti m 3 a poloměru r mějme dvě závaží. Vlevo je m 1, vpravo m 2. Přitom platí m 1 > m 2 a m 1 klesá se zrychlením a které hledáme dolů. Pro tahy t 1, t 2, které vyvolávají jednotlivá závaží můžeme psát :

Příklad dvě závaží na kladce II Můžeme-li zanedbat vliv kladky J ≈ 0  t1 = t2  Pokud kladku zanedbat nemůžeme, použijeme :

Příklad dvě závaží na kladce III Po jejich dosazení platí : a po jednoduché úpravě konečně dostáváme :

Příklad dvě závaží na kladce IV Stejný výsledek dostaneme ze zachování energie : Když závaží m 1 poklesne za Δt o Δh :, bude se pokles jeho potenciální energie rovnat nárůstu kinetické energie obou závaží i kladky : derivujeme podle času, potom zkrátíme v a upravíme ^

Moment setrvačnosti tenké tyčky Mějme tenkou homogenní tyčku o průřezu S, délce L a hustotě ρ. J vůči ose kolmé k délce a procházející koncem tyčky je : vůči paralelní ose procházející těžištěm změníme jen meze a můžeme snadno ověřit Steinerovu větu : ^

Moment setrvačnosti rotačního válce J homogenního válce délky L, poloměru a a hustoty ρ vůči rotační ose vypočteme použitím polárních souřadnic : Je patrné, že středový úhel může být jakýkoli a projeví se to pouze v příslušné hmotnosti m. ^

Pohyb s proměnnou hmotností I Na pás dopravníku, běžící rychlostí 2.2 m/s dopadá 75 kg/s písku s nulovou vodorovnou rychlostí. Jakou sílu a výkon musí mít motor pohánějící dopravník, aby se pás pohyboval konstantní rychlostí? Vyjdeme ze skalární formy rovnice pro pohyb s proměnnou hmotností :

Pohyb s proměnnou hmotností II Na udržení konstantní rychlosti pásu je tedy třeba síla 2.2*75 = 165 N. Potřebný výkon motoru : Zajímavé je, že jen polovina tohoto výkonu jde na zvýšení kinetické energie písku. ^

Pohyb s proměnnou hmotností III Raketa o hmotnosti 21 t, z toho 15 t paliva startuje ze Země svisle vzhůru. Z motorů vylétá 130 kg/s paliva rychlostí 2800 m/s. Jaký je tah motorů? Jaká je výsledná síla po odečtení gravitační při startu a těsně před vyhořením paliva? Jak dlouho trvá než palivo vyhoří? Jaké rychlosti raketa dosáhne?

Pohyb s proměnnou hmotností IV Tah : Výsledné síly :

Pohyb s proměnnou hmotností V Zanedbáme odpor vzduchu a předpokládáme, že během, letu rakety 79 s, je gravitační zrychlení g konstantní. Pak : Po dosazení konečného času a hmotnosti je rychlost v = 2730 m/s.

Pohyb s proměnnou hmotností VI Raketa nedosáhla ani první kosmické rychlosti, takže pokud by neměla další stupeň, spadla by zpátky na Zem. Gravitační zrychlení ve výšce 100 km je jen o 1.5% menší než g. Zanedbání odpor vzduchu je vzhledem k dosaženým rychlostem určitě nekorektní. ^