Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

PZORA pzora.wz.cz 1. přednáška. Viditelné světlo elektromagnetické záření o vlnových délkách 400-700 nm.

Podobné prezentace


Prezentace na téma: "PZORA pzora.wz.cz 1. přednáška. Viditelné světlo elektromagnetické záření o vlnových délkách 400-700 nm."— Transkript prezentace:

1 PZORA pzora.wz.cz 1. přednáška

2 Viditelné světlo elektromagnetické záření o vlnových délkách nm

3 Barevné vidění lidské oko vnímá: –dominantní vlnovou délku (odstín) –čistotu barvy (sytost) –jas (intenzitu)

4 Monochromatické, achromatické světlo monochromatické světlo - s konkrétní vlnovou délkou achromatické ("bílé") - signál složený ze záření všech vlnových délek viditelného spektra difůzní odraz: –odraz > 80% bílé předměty –odraz < 3% černé předměty barva = schopnost předmětů odrážet světlo "červený předmět odráží jen červené světlo" hnědá barva "neexistuje"

5 Barevné modely jak vyjádřit libovolnou barvu pomocí několika málo parametrů? RGB CMY(K) HLS HSV YUV...atd.

6 RGB Red - Green - Blue používá se v monitorech (televizích atd.) aditivní model –čím více svítí jednotlivé složky, tím světlejší je výsledná barva každá barva X se dá vyjádřit jako –X = rR + gG + bB –0 ≤ r,g,b ≤ 1 –pro odstíny šedi platí r = g = b (0 - černá, 1 - bílá) grafická reprezentace = RGB kostka

7 RGB kostka

8 CMY(K) Cyan-Magenta-Yellow (blacK) používá se v tiskárnách dobře viditelné např. na billboardech subtraktivní model –čím více jsou body nahusto a přes sebe, tím tmavší výsledek –bílá barva = nepotištěný papír vyjádření –X = cC + mM + yY = (1-c)R + (1-g)G + (1-b)B –tj. CMY a RGB jsou vzájemně duální

9 Novinový tisk

10 HLS Hue-Lightness-Saturation –odstín, světlost, sytost intuitivní v graf. editorech

11 Počítačová reprezentace obrazu diskrétní jednotka obrazu = pixel (picture element) každý pixel má jedinou vlastnost - barvu obraz = matice pixelů –typická rozlišení 1024x768, 1280x1024, 1600x1200 –moderní fotoaparáty: 4 a více megapixelů

12 Počítačová reprezentace obrazu 2 na disku = binární soubor = posloupnost bytů kolik bitů potřebujeme, abychom vyjádřili barvu 1 pixelu...? barevné rozlišení (barevná hloubka) –počet barev v obrázku –nejčastěji se udává v bitech na pixel –typicky 2 bity - černobílý obraz 8 bitů barev 16 bitů - highcolor barev 24 bitů - true color = cca 16,7 mil. barev

13 Paměťové nároky obrázek 1000x1000 pixelů –černobílý: 10 6 x 2 bitů = 10 6 / 8 bytů = cca 250kB –256 barev: 10 6 x byte = 10 6 bytů = cca 1MB –truecolor: 10 6 x 3 bytů = cca 3MB paměťově náročné –zabírá hodně místa na pevném disku –dlouhá doba přenosu po pomalých linkách (Internet)

14 Komprese obrazu 1)neztrátová po kompresi a dekompresi získáme přesně původní obraz RLE, Huffmanovo kódování 2)ztrátová část informace se při kompresi zahodí ztráta kvality obrazu (pokud možno neznatelná nebo málo znatelná) JPEG

15 Paleta (index) vhodné pro kresby, resp. obrázky s omezenou barevnou hloubkou (zpravidla do 256 barev) kód barvy RGB na výstup se místo hodnot R, G, B zapíše kód barvy hodnoty R, G, B se pak dohledají v tabulce

16 Metoda RLE Run Length Encoding –zakódování délkou běhu, využívá paletu –vhodné pro předlohy s velkými stejnobarevnými plochami (kresby) princip –posloupnost opakujících se hodnot se nahradí dvojicí [počet opakování, hodnota] –př [5 11] [4 8] [7 45] problém –může dojít k záporné kompresi (kdy?)

17 Huffmanovo kódování používá kratší bitové kódy pro ty hodnoty, které se v souboru vyskytují nejčastěji obecná metoda, vhodná i pro jiná data než obrazová rozšířený Huffman: LZW (Lempel-Ziv-Welch) –"hodnotou" nemusí být jediný znak –základ ZIP komprese

18 JPEG od počátku 80.let pojmenovaný podle skupiny, kterou byl vytvořen: Joint Photographic Experts Group speciálně pro ukládání fotografií (obrazů se spojitými, plynulými barevnými přechody) komplexní matematický aparát v pozadí založen na DCT (diskrétní kosinové transformaci)

19 Nekonečné řady & konvergence počítače umějí jen sčítat a násobit problém: jak počítat složitější funkce (ln, sin)? Taylorova věta: –každá "rozumná" funkce se dá psát jako –čím větší počet členů n, tím menší chyba

20 Nekonečné řady & konvergence například platí: Taylorova řada používá k vyjádření dané funkce polynom JPEG využívá Fourierovu řadu (součet kosinů)

21 Fourier na obrazová data vezměme 1 řádek obrázku, např. x f(x) budeme jej chtít vyjádřit jako speciální typ Fourierovy řady tj. chceme zjistit koeficienty a 0,..., a 7

22 Fourier na obrazová data: DCT získáme je podle předpisu...a máme spektrum funkce f(x) j ajaj 31,827,911-26,92-8,6573,5360,229-0,328-3,524 každý z koeficientů a j v sobě nese část informace o celé původní funkci (počítá se ze všech jejích bodů) z koeficientů lze původní funkci rekonstruovat

23 Fourier na obrazová data: IDCT počítáme částečné součty podle vztahu x S 0 (x) 11 S 1 (x) S 2 (x) S 3 (x) S 4 (x) S 5 (x) S 6 (x) S 7 (x)

24 Princip JPEG už součet S 3 slušně aproximuje původní snímek zapamatujeme si jen koeficienty a 0, a 1, a 2, a 3, zbylé zahodíme odtud ztrátová komprese ve skutečnosti se Fourier neprovádí na řádky, ale na čtverečky 8x8 pixelů o něco složitější, principiálně stejné kvalita - "kolik koeficientů si budeme pamatovat?"

25 JPEG v různé kvalitě 50%, 8kB20%, 6kB5%, 2kB


Stáhnout ppt "PZORA pzora.wz.cz 1. přednáška. Viditelné světlo elektromagnetické záření o vlnových délkách 400-700 nm."

Podobné prezentace


Reklamy Google