Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Normální rozdělení také Gaussovo rozdělení (normal or Gaussian distribution)

Podobné prezentace


Prezentace na téma: "Normální rozdělení také Gaussovo rozdělení (normal or Gaussian distribution)"— Transkript prezentace:

1 Normální rozdělení také Gaussovo rozdělení (normal or Gaussian distribution)

2 Hustota pravděpodobnosti platí - střední hodnota rozdělení je  variance rozdělení je  2

3 Je tu jistá nedůslednost -  značí jak obecně střední hodnotu, tak specificky parametr normálního rozdělení (který je ovšem také střední hodnotou, podobně pro  2 Klíčové postavení normálního rozdělení ve statistice vyplývá z centrální limitní věty. Vyplývá z ní, že průměr “velmi velkého” náhodného výběru je náhodnou veličinou s přibližně normálním rozdělením, i když má základní soubor rozdělení jiné než normální.

4 cca 68% pozorování přes 95% pozorování 97,5% kvantil N(0,1)=1,96

5

6 Z “definice” - proměnná s normálním rozdělením může s nenulovou pravděpodobností nabývat hodnot od - do + Biologické proměnné většinou normální rozdělení nemají, ale můžeme je často normálním rozdělením “rozumně” aproximovat.

7 Protože hodnoty hustoty pravděpodobnosti i distribuční funkce normálního rozdělení jsou známy, můžeme (jako určitý integrál) pro dané parametry (μ, σ 2 ) spočítat pravděpodobnost, že se bude náhodná proměnná nacházet v daném intervalu.

8 Šikmost a špičatost i-tý obecný moment - průměrná hodnota X i i-tý centrální moment, κ i - průměrná hodnota (X-  ) i Střední hodnota je tedy první obecný moment První centrální moment je z definice 0 Variance je druhý centrální moment Šikmost je charakterizována třetím centrálním momentem Špičatost čtvrtým centrálním momentem

9 Šikmost Pozitivně šikmé - mnoho malých negativních odchylek od průměru je kompenzováno menším množstvím velkých pozitivních odchylek: 3, 3, 3, 4, 7 μ=4  3 ={(3-4) 3 + (3-4) 3 + (3-4) 3 + (4-4) 3 + (7-4) 3 }/5 ={(-1)+(-1)+(-1)+0+27}/5=24/5=4.8  3 - je ve třetích mocninách jednotky měření - je bezrozměrné a udává pouze tvar

10 Šikmost Negativně šikmé rozdělení - mnoho malých pozitivních odchylek od střední hodnoty kompenzováno malým množstvím velkých negativních odchylek 5, 5, 5, 1, 4 μ=4  3 ={(5-4) 3 + (5-4) 3 + (5-4) 3 + (4-4) 3 + (1-4) 3 }/5 ={ (-27)}/5=-24/5=-4.8

11 Špičatost - 4. centrální moment Normální rozdělení je mesokurtické, normální - mesokurtické leptokurtické  2 > 0platykutické  2 < 0

12 Standardizované (normované) normální rozdělení

13 “Ověřování“ normality - grafické Vynést kumulativní histogram četností na pravděpodobnostní stupnici

14 Ověřování normality - spočtu šikmost a špičatost a porovnám s očekávanými hodnotami pro normální distribuci. Věršina biologických dat má pozitivně šikmé rozdělení - proto spočtení šikmosti dává často dost silný test, a zároveň nám říká, jak se data liší od normality.

15 Ověřování normality - test dobré shody χ 2 Spočtu průměr a varianci z dat, a porovnám získaná data s daty s normálním rozdělením, které má stejný průměr a stejnou varianci, jako moje data. Pak pomocí χ 2 testu porovnám počty případů velikostních třídách vytvořených z pozorovaných dat, a očekávané frekvence v normálním rozdělení - klasické problém, musím rozhodnout o šíři kategorií (šíři sloupečků v histogramu) - počet stupňů volnosti = k parametry z dat

16 Očekávané četnosti jsou příliš nízké, obvykle se sousední sloupečky spojují (default ve Statistice je, když E<5) – to může občas vést k problémům

17 Editoři časopisů občas takový test vyžadují, ale (skoro) žádná biologická data nemají normální rozdělení, takže když mám hodně dat, test je silný, a nulovou hypotézu o normalitě zamítnu (i v případě, že odchylka od normality je malá) když mám málo dat, test je zoufale slabý, a i pro data s velkou odchylkou od normality nemohu zamítnout nulovou hypotézu


Stáhnout ppt "Normální rozdělení také Gaussovo rozdělení (normal or Gaussian distribution)"

Podobné prezentace


Reklamy Google