Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Seminář č. 3 Termodynamika a chemické reakce S p u s.

Podobné prezentace


Prezentace na téma: "Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Seminář č. 3 Termodynamika a chemické reakce S p u s."— Transkript prezentace:

1 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Seminář č. 3 Termodynamika a chemické reakce S p u s t i t Ing. Pavel Šiman, CSc.

2 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Základní rozdělení všech termodynamických systémů je: stabilní a nestabilní reverzibilní a irreverzibilní pevné, kapalné a plynné subatomární, atomární a molekulární otevřené, uzavřené a izolované

3 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Mezi stavové veličiny patří: teplota objem tlak barva hmotnost

4 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad 1 Další Konec Předchozí O termodynamickém ději můžeme říci: dochází při něm ke změně stavu systému může být izotermický může být revezibilní nebo irreverzibilní může být zároveň izobarický a izochorický může být zároveň izotermický, izobarický a izochorický Výklad 2

5 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Další Konec Předchozí O volné enthalpii u izotermicko-izobarického děje můžeme říci: je jedním z druhů termodynamických energií její změna je rovna objemové práci přijaté systémem z okolí její změna je rovna teplu přijatému systémem z okolí její změna má dvě složky: enthalpickou a entropickou její změna je rovna neobjemové práci přijaté systémem z okolí Výklad 2 Výklad 1

6 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Termodynamický děj může být: exotermní nebo endotermní zároveň exergonní a endergonní exergonní nebo endergonní zároveň exergonní a endotermní zároveň exotermní a exergonní

7 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí O chemické reakci můžeme obecně říci: je termodynamickým dějem dochází při ní ke změnám ve vzájemném uspořádání atomů v rámci alespoň jedné ze zúčastněných částic dochází při ní k jaderným změnám alespoň u jednoho z atomů zúčastněných částic musí se při ní změnit alespoň jedna vazebná interakce musí se při ní změnit alespoň jedna nevazebná interakce

8 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Chemické reakce můžeme dělit na: monomolekulární a bimolekulární molekulové, iontové a radikálové zajímavé a nezajímavé homogenní a heterogenní barevné a nebarevné

9 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Hoření vodíku v kyslíku za vzniku vody je reakcí: exergonní souborem následných bimolekulárních reakcí trimolekulární endotermní elementární bimolekulární

10 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí O rychlosti chemické reakce platí: je úměrná časovému úbytku koncentrace reaktantů její změřená hodnota nezávisí na tom, kterou z reagujících látek si k jejímu měření vybereme je součtem časových úbytků koncentrací všech reaktantů je úměrná časovému přibývání koncentrace produktů její změřená hodnota závisí na tom, kterou z reagujících látek si k jejímu měření vybereme

11 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad 2 Další Konec Odpověď Předchozí Rychlost chemické reakce závisí: na teplotě systému reagujících látek na objemu systému na tlaku systému na celkové hmotnosti systému na koncentraci reagujících látek Výklad 1

12 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Výklad Další Konec Odpověď Předchozí Vypočtěte jednotlivé řády vzhledem k složkám a celkový řád reakce: A + B + C → produkty, pokud byly změřeny následující poměry rychlostí reakce v x vzhledem k rychlosti reakce ekvimolární směsi výchozích látek v 0 : v A /v 0 = 1,189 pro [A] separátně zvýšenou o jednu pětinu, v B /v 0 = 1,047 pro [B] separátně zvýšenou o jednu pětinu, v C /v 0 = 1,189 pro [C] separátně zvýšenou o jednu pětinu.

13 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Jaké reakční schéma má patrně reakce z předchozí otázky: A + B + C → prod., kdy řády reakcí vzhledem k složkám jsou 0,95 pro složky A a C a 0,25 pro složku B ? jednokroková trimolekulární reakce A + B → AB*, AB* + C → produkty, přičemž první reakce je rychlejší než druhá A + B → AB*, AB* + C → produkty, přičemž druhá reakce je rychlejší než první A + C → AC*, AC* + B → produkty, přičemž první reakce je rychlejší než druhá A + C → AC*, AC* + B → produkty, přičemž druhá reakce je rychlejší než první

14 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí (Z)vratnou reakcí nazýváme reakci: jejíž rychlost není závislá na teplotě systému reagujících látek která po určité charakteristické době obrátí (zvrátí) svůj směr jejíž rychlost není závislá na tlaku systému která směřuje k ustavení rovnovážného poměru koncentrací mezi výchozími látkami a produkty kdy v jakémkoli čase po začátku jejího průběhu můžeme v reakční směsi nalézt jak výchozí látky, tak produkty

15 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Rovnováha vratné reakce nastává: nemění-li se již v čase složení (tedy poměr koncentrací jednotlivých složek) reakční směsi je-li rychlost reakce jedním směrem rovna rychlosti protisměrné reakce jsou-li rychlosti obou protisměrných reakcí již prakticky nulové vymizí-li samovolně z reakční směsi výchozí látky stoupnou-li koncentrace produktů na maximum Výklad 2 Další Konec Odpověď Předchozí Výklad 1

16 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Jakou hodnotu rovnovážné konstanty bude mít reakce A + 2B ↔ AB 2, pokud ekvimolární koncentrace [B] klesne v rovnováze z původních 4 mol/l na 1 mol/l ? K = 0,25 K = 2 K = 3 K = 4 K = 5

17 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Jaké budou rovnovážné koncentrace látek v reakci (přesmyku) A ↔ C, pokud K = 9, [A] 0 = 1 mol/l a [C] 0 = 0 mol/l ? [A] rovn = 0,1 mol/l, [C] rovn = 0,1 mol/l [A] rovn = 0,1 mol/l, [C] rovn = 0,5 mol/l [A] rovn = 0,1 mol/l, [C] rovn = 0,9 mol/l [A] rovn = 0,5 mol/l, [C] rovn = 0,5 mol/l [A] rovn = 0,9 mol/l, [C] rovn = 0,1 mol/l

18 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D Výklad 3 Další Konec Odpověď Předchozí Lze ovlivnit rovnovážné složení reakční směsi u vratné reakce? ano, vždy většinou ano, ale ne vždy (existují výjimky) jen v řídkých případech, většinou ale nikoli nelze nikdy Výklad 2 Výklad 1

19 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Jak můžeme ovlivnit silně exotermní reakci 2H 2 + O 2 ↔ 2H 2 O, abychom v reakční směsi po ustavení rovnováhy zjistili nezanedbatelné koncentrace H 2 a O 2 ? výrazným zvýšením tlaku reakční směsi výrazným snížením tlaku reakční směsi výrazným zvýšením reakční teploty výrazným snížením reakční teploty nelze ovlivnit, reakce je nevratná Výklad 3 Další Konec Odpověď Předchozí Výklad 2 Výklad 1

20 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Odpověď Předchozí Při rovnováze exotermní vratné reakce platí: ΔH > 0, ΔG > 0 ΔH > 0, ΔG = 0 ΔH = 0, ΔG ≠ 0 ΔH = 0, ΔG = 0 ΔH < 0, ΔG ≠ 0

21 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad 1 Další Konec Předchozí O katalyzátoru můžeme říci: urychluje nebo dokonce umožňuje průběh katalyzované reakce za daných podmínek snižuje aktivační energii katalyzované reakce snižuje hodnotu kladné změny volné enthalpie ΔG u endergonních reakcí zvyšuje výtěžek produktů u katalyzované reakce urychluje ustavení rovnováhy katalyzovaných vratných reakcí za daných podmínek Výklad 2

22 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Katalyzátory můžeme dělit: dle počtu fází zúčastněných v katalyzované reakci dle typu reakcí jimi katalyzovaných dle energie, o kterou katalyzátor zvyšuje energetický výtěžek reakce dle látek či typu látek, na které se katalyzovanými reakcemi katalyzátory samy přeměňují dle rozdílu množství produktů, o které katalyzátor zvyšuje výtěžek reakce Výklad 2 Další Konec Odpověď Předchozí Výklad 1

23 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A B C D E Výklad Další Konec Předchozí Inhibicí katalýzy rozumíme: použití příliš malého množství katalyzátoru účinek látky, která zvyšuje aktivační energii katalyzované reakce nepoužití katalyzátoru snížení reakční teploty a tím snížení rychlosti katalyzované reakce účinek látky, která snižuje účinnost katalyzátoru

24 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Poslední otázka podpory Inhibitorem nebo stabilizátorem rozumíme látku: snižující tlak v reakční směsi zvyšující aktivační energii reakce odstraňující katalyzátor snižující teplotu reakční směsi obracející směr vratné reakce A B C D E Výklad Konec Odpověď Předchozí

25 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Pojem systém je základním pojmem termodynamiky. Obecně můžeme za termodynamický systém označit obsah jakéhokoli prostoru, který si fyzicky či pouze myšlenkově vyčleníme v našem Vesmíru. Smysluplné systémy jsou např. obsah zkumavky, buňka či celý organismus. Zbytek Vesmíru za hranicemi námi vymezeného systému potom nazýváme okolí systému. Termodynamické systémy můžeme dělit podle různých, momentálně vhodných (i omezených) kritérií. Základní dělení však vychází z charakteristiky společné pro všechny systémy – z toho, co může systém vyměňovat s okolím: A. otevřený systém může vyměňovat s okolím jak energii, tak hmotu. Příkladem může být obsah otevřené nádoby nebo třeba organismus. B. uzavřený systém může s okolím vyměňovat energii, nikoli však hmotu. Příkladem může být hermeticky uzavřená nádoba, např. zatavená ampule. C. izolovaný systém nemůže s okolím vyměňovat nic. Dokonale izolovaný systém neznáme, přibližuje se však k němu např. obsah Dewarových nádob (lidově termosek) nebo kalorimetrů. Zpět

26 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Termodynamický systém se vždy nachází v nějakém stavu, který můžeme z hlediska termodynamiky jednoznačně popsat pomocí soustavy stavových veličin. Mezi ty základní patří např. teplota T (v K) nebo t (ve O C), tlak P, objem V, hmotnost m, náboj Q a některé druhy termodynamických energií jako vnitřní energie U, teplo Q (celkové teplo) nebo q (vyměněné teplo). Řada stavových veličin je odvozených a říkáme jim stavové funkce: např. koncentrace c, hustota ρ a energie: enthalpie H, volná enthalpie G,... Stavové veličiny rozdělujeme především podle dvou kritérií: 1. podle aditivnosti: a) aditivní: m, Q (jako náboj), V (s omezením), U (vnitřní energie, E jako celek),... b) neaditivní: T, P, c, ρ, (V),..., jednotlivé druhy energií. 2. podle možnosti změřit jejich absolutní velikost: a) absolutní: T, P, V, m, c, ρ,... b) relativní: všechny druhy termodynamických energií, kdy jsme schopni měřit pouze rozdíly mezi dvěma stavy. Zpět

27 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Termodynamickými ději nazýváme takové děje, při kterých dochází ke změně termodynamického stavu systému, tedy ke změně alespoň jedné ze stavových veličin ( vzhledem k jejich vzájemné provázanosti si však změnu jen jedné z nich při termodynamickém ději lze jen těžko představit ). Jedním ze základních kritérií dělení je jejich reverzibilita (vratnost): A. reverzibilní (vratné), kdy změny jsou téměř nekonečně malé a my téměř nekonečně malým zásahem můžeme děj obrátit. Prakticky ideálně vratnými ději by tedy byly pouze děje probíhající v téměř nekonečné blízkosti rovnováhy, v jakékoli větší vzdálenosti od ní bychom pak vždy nalezli prvky irreverzibility. B. irreverzibilní (nevratné), kdy změny stavu jsou prakticky skokové a my nemůžeme daný děj obrátit jen nekonečně malým zásahem. Ovšem termodynamické děje klasifikujeme i podle dalších kritérií: podle změn obsahu různých druhů energií (exo- a endotermní, exergonní a endergonní) nebo podle podmínek, za kterých probíhají (např. izotermické, izobarické, izochorické, adiabatické, diatermické). Zpět

28 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Zpět Další klasifikace dějů může být podle podmínek, za jakých děje probíhají: A. izotermické (izotermní), kdy během celého děje nedochází ke znatelné změně teploty systému (T=konst.), B. izobarické, kdy během celého děje nedochází ke znatelné změně tlaku systému (P=konst.), C. izochorické, kdy během celého děje nedochází ke znatelné změně objemu systému (V=konst.), D. adiabatické, kdy během celého děje nedochází k výměně tepla mezi systémem a okolím (ΔQ=0), E. diatermické, kdy během děje dochází k výměně tepla mezi systémem a okolím (ΔQ≠0).... a další možnosti Obecný termodynamický děj může být z hlediska této klasifikace i „smíšený“. Např. většina běžně prováděných chem. reakcí (vč. těch, které probíhají v organismu) je zároveň izotermická, izobarická i izochorická. Naproti tomu adiabatičnost se s diatermicitou vzájemně vylučují.

29 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Dělení dějů může být podle energetických změn, které při ději nastávají: 1. podle změn enthalpie systému H ( změna enthalpie ΔH je rovna teplu q, přijatému systémem při izobarickém ději ): A. exotermní (exotermické), kdy systém během celého děje předává teplo svému okolí (ΔH<0, enthalpie systému klesá), a B. endotermní (endotermické), kdy systém během celého děje přijímá teplo od svého okolí (ΔH>0). 2. podle změn volné enthalpie systému G ( změna volné enthalpie ΔG je rovna neobjemové práci („chemické energii“) přijaté systémem při izotermicko-izobarickém ději ): A. exergonní (exergonické), kdy systém během celého děje předává neobjemovou práci svému okolí (ΔG<0), a B. endergonní (endergonické), kdy systém během celého děje přijímá neobjemovou práci od svého okolí (ΔG>0). Děje exergonní jsou samovolné a ke svému průběhu nepotřebují dodávání energie, děje endergonní jsou naopak nesamovolné, jsou vynucené, a ke svému průběhu potřebují průběžné dodávání energie z okolí. Zpět

30 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Volná enthalpie (také tzv. Gibbsova energie nebo Gibbsova funkce) je jedním z druhů energií systému, který v termodynamice zavádíme a který běžně značíme G. Podobně jako jiné druhy tmd. energií, je i G stavovou veličinou (resp. stavovou funkcí) relativní, neznáme tedy její absolutní hodnotu a můžeme měřit či počítat jen její změny. Změnu volné enthalpie systému definujeme jako jinou než objemovou práci, kterou systém při izotermicko-izobarickém ději přijímá z okolí. Pokud budeme popisovat chemickou reakci, která neuvolňuje nebo nepřijímá energii ve formě elektrické či světelné energie, můžeme si představit G jako jakousi „chemickou energii“ systému. Velice jednoduchým odvozením vycházejícím z první věty termodynamické a z definice entropie S (dle fenomenologické termodynamiky) dostaneme: ΔG = ΔH – TΔS. Z rovnice je tedy zřejmé, že změna volné enthalpie má dvě na sobě nezávislé části: část enthalpickou (popisující tepelné zabarvení děje) a část entropickou (mající souvislost s pravděpodobností uspořádání systému). Je-li ΔG kladné, znamená to, že při ději se zvyšuje G systému a aby děj proběhl, musíme patřičnou energii dodat. Takový děj je nesamovolný, vynucený, tzv. endergonní. Naproti tomu při záporném ΔG je zřejmé, že děj bude probíhat samovolně, neboť systém snižuje obsah své energie a takový děj označujeme jako exergonní. Zpět

31 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Chemickými reakcemi nazýváme takové termodynamické děje, při kterých v systému dochází ke změně chemické kvality. To je vždy spojeno se změnami energie systému, ale také s vazebnými změnami v rámci minimálně jednoho chemického individua v systému přítomného. Nutně tedy musí dojít alespoň k jednomu z následujících pochodů: zánik chemické vazby a/nebo vznik nové chemické vazby. Chemické reakce klasifikujeme podle mnoha kritérií: podle počtu fází: homogenní a heterogenní, podle vnějších změn: skladné, rozkladné, záměnné a podvojné přeměny, podle vazebných změn: štěpení vazeb, vznik nových vazeb, současně štěpení a vznik nových vazeb, podle reagujících částic: molekulové, iontové a radikálové, podle přenášené částice: redoxní, protolytické, koordinační a „ostatní“, podle molekularity: monomolekulární, bimolekulární, podle energetiky: dle tepelného zabarvení izobarických reakcí: exotermní a endotermní, dle samovolnosti izobar.-izoterm. reakcí: exergonní a endergonní,... a jsou další možnosti klasifikace dle momentální vhodnosti. Zpět

32 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Chemické reakce mohou být z hlediska počtu částic zúčastněných na jednom elementárním kroku reakce pouze monomolekulární či bimolekulární. Účinná srážka více než dvou částic v rámci tzv. chemického času ( což je charakteristický čas pro elektromagnetické interakce, do cca s ) je totiž za „chemických“ tlaků a teplot zcela nepravděpodobná. Pouze elementární chemické reakce si však vystačí s jedním mono- nebo bi-molekulárním krokem, naprostá většina reakcí pak musí být vícekroková, složená z více následných (konsekutivních) elementárních reakcí. A právě zjištění přesného mechanismu chemických reakcí je jedním z hlavních úkolů reakční kinetiky. Např. ani relativně jednoduchá reakce: A + B + C  produkty nemůže proběhnou jednokrokově, ale sestává minimálně ze dvou následných elementárních reakcí: buď A + B  AB*, AB* + C  produkty, nebo A + C  AC*, AC* + B  produkty, nebo B + C  BC*, BC* + A  produkty, kde „sloučeniny“ označené hvězdičkou představují reaktivní meziprodukty (obvykle velice nestabilní, často těžko zachytitelné i fyzikálními metodami). Poznámka: ono ani s tou monomolekularitou to není zcela exaktní, protože i k rozkladu vysoce labilní molekuly musí tato alespoň narazit na stěnu nádoby či na jinou částici nebo musí absorbovat dostatečnou energii od elmag. nebo částicového záření. Přesto se monomolekulární reakce také běžně uvažují. Zpět

33 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Rychlost chemické reakce je definována jako časová změna koncentrace libovolné složky reagující směsi upravená tak, aby na výběru této složky nezávisela. Pro obecnou stechiometrickou reakci: aA + bB +...  xX + yY +..., kde malá písmena představují stechiometrické koeficienty, definujeme tedy reakční rychlost: v = -(1/a).(Δ[A]/Δt) = -(1/b).(Δ[B]/Δt) =... = +(1/x).(Δ[X]/Δt) =... nebo lépe v = -(1/a).(d[A]/dt) = -(1/b).(d[B]/dt) =... = +(1/x).(d[X]/dt) =..., kde symbol Δ znamená změnu (rozdíl), symbol d je diferenciál a znamená nekonečně malou změnu (rozdíl) a hranaté závorky značí koncentraci příslušné látky. Znaménko minus při použití výchozích látek zajišťuje kladnou hodnotu rychlosti, neboť výchozích látek s časem ubývá a časová změna jejich koncentrace je tedy záporná. Vynásobením reciprokou hodnotou stechiometrických koeficientů potom zajistíme stejnou hodnotu v při výběru jakékoli reakční složky k měření, v praxi nejčastěji té, jejíž koncentrace se nejsnadněji a/nebo nejpřesněji dá měřit. Zpět

34 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Rychlost chemické reakce závisí na více parametrech. V reakční kinetice je jednou z nejsledovanějších závislost rychlosti na koncentracích výchozích látek. Pro jednoduchou reakci, kterou můžeme popsat rovnicí A  produkty obvykle naměříme, že v = k. [A] (tzv. rychlostní rovnice). kde k je rychlostní konstanta. Potom mluvíme o reakci prvního řádu, kdy onen řád reakce je dán exponentem u koncentrace [A]. Podobně u reakce: 2A  produkty můžeme naměřit, že v = k. [A] 2 a potom mluvíme o reakci druhého řádu, stejně jako u reakce A + B  produkty, kdy lze naměřit, že v = k. [A].[B]. Zde ovšem také mluvíme o prvním řádu reakce vzhledem k látce (složce) A nebo látce B. Celkový řád reakce je potom dán součtem parciálních řádů vzhledem ke všem výchozím látkám, v tomto případě tedy = 2. Máme-li reakci A  produkty, která je katalyzovaná a látka A je ve velkém nadbytku nad katalyzátorem, obvykle naměříme, že v = k. [A] 0 = k, tedy že rychlost je v čase konstantní. Potom mluvíme o reakci nultého řádu. Ovšem u složitějších chemických reakcí ( míněno - složených z následných ) se častěji setkáváme s řády necelistvými, které nelze snadno odvodit a musí se proto změřit. Z toho potom můžeme usuzovat mj. na mechanismus reakcí. Zpět

35 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Rychlost chemické reakce závisí obecně též na teplotě, při které k reakci dochází. Teplota se v rychlostní rovnici vyjadřující závislost na koncentracích výchozích látek projevuje v rychlostní konstantě k. Teplotní závislost tohoto koeficientu asi nejlépe popisuje semiempirická Arrheniova rovnice: k = A. e -E A /RT, kde A je frekvenční faktor zohledňující sterické nároky účinné srážky dvou reagujících částic a E A je aktivační energie, kterou vzájemně vůči sobě přinejmenším musí mít obě srážející se částice, aby srážka byla účinná. Je jasné, že se zvyšující se teplotou klesá „zápornost“ exponentu a tedy vzrůstá velikost rychlostní konstanty a tím i rychlost chem. reakce Reakční rychlost může vykazovat též závislost na tlaku, a to v případě, že se jedná o reakci, kdy je alespoň jedna z rychlost ovlivňujících látek v plynném stavu. Zvýšení celkového tlaku zvyšuje totiž i parciální tlaky plynných složek – tedy vlastně jejich koncentrace – a tak se zde ovlivnění rychlosti tlakem principiálně neliší od ovlivnění koncentracemi ( viz rychlostní rovnice v minulém výkladu ). Rychlost některých reakcí můžeme významně ovlivnit přídavkem vhodných a pro danou reakci specifických látek – katalyzátorů, inhibitorů nebo stabilizátorů. Blíže u výkladu katalýzy. Zpět

36 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie U podstatné části chemických reakcí můžeme zjistit, že kromě reakce ve směru od výchozích látek k produktům musí probíhat i opačná reakce, kdy naopak z produktů nezanedbatelně vznikají zase zpět výchozí látky. Takové reakce nazýváme vratnými (také zvratnými) a zapisujeme je pomocí oboustranných šipek: výchozí látky ↔ produkty. Smícháme-li čisté výchozí látky přesně ve stechiometrických poměrech, pak v čase t=0 bude koncentrace produktů nulová. V jakémkoli čase t>0 však můžeme detekovat v reakční směsi jak výchozí látky, tak i produkty a dokonce i v čase t→∞ bude přítomnost výchozích látek – na rozdíl od případu reakcí (prakticky) jednosměrných – nezanedbatelná, dobře měřitelná. POZOR ale!!! Pokud zvnějšku zasáhneme nějakou akcí, můžeme vratnost ovlivnit až do té míry, že se reakce bude zdát nevratná ( viz dále: ovlivnění rovnováhy ). Např. u reakce A + B ↔ C + D si lze představit, že na počátku, kdy jsou v reakční směsi přítomné pouze látky A a B, může probíhat jen reakce zleva doprava. Ale okamžitě po vzniku i minimálního množství látek C a D je umožněna i opačná reakce, tedy zprava doleva. A tak není možné, abychom v libovolném čase t>0 měli jen čistou směs A a B nebo jen C a D, ale vždy tam budou přítomny všechny čtyři látky ( až na případy vnějšího ovlivnění rovnováhy ). Zpět

37 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Máme-li libovolnou vratnou reakci a budeme u ní sledovat časovou závislost koncentrací všech zúčastněných látek, zjistíme, že s pokračujícím časem se jejich koncentrace stále pozvolněji blíží k určitým mezním hodnotám. Teoreticky v čase t = ∞, prakticky ovšem naštěstí daleko dříve zjistíme, že se sledované koncentrace již dále nemění. Říkáme, že reakční směs dosáhla rovnovážného stavu nebo také rovnováhy. Jde ovšem, jako u všech rovnovážných termodynamických dějů, o dynamickou rovnováhu, kdy oba protichůdné procesy stále probíhají, oba však stejnou rychlostí. Mějme např. u reakce aA + bB ↔ cC + dD na počátku stechiometrickou směs čistých látek A a B. Ty se začnou okamžitě přeměňovat na produkty C a D, a to rychlostí v 1, která je (neuvažujeme-li reakci nultého řádu) úměrná koncentracím A a B. Tyto výchozí látky však zmiňovanou reakcí stále ubývají a tak se s postupujícím časem bude snižovat také rychlost v 1. Na druhou stranu však budou přibývat produkty C a D, čímž se umožní opačná reakce, jejíž rychlost v 2 se bude se stále vzrůstající koncentrací C a D zvyšovat. V okamžiku, kdy se rychlosti v 1 a v 2 prakticky vyrovnají, tedy když v 1 = v 2, mluvíme o ustavení (dynamické) rovnováhy, kdy obě reakce „donekonečna“ probíhají, systém však své složení a obecně i svůj termodynamický stav již nemění. Zpět

38 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Mějme vratnou chemickou reakci aA + bB ↔ cC + dD. Dle Guldbergova- Waageova zákona můžeme pro rychlost reakce zleva doprava napsat: v 1 = k 1. [A] α. [B] β, kde exponenty α a β vyjadřují řády reakce vzhledem k látkám A a B a obecně nejsou totožné se stechiometrickými koeficienty a a b. Obdobně lze napsat výraz i pro rychlost protisměrné reakce: v 2 = k 2. [C] γ. [D] δ. V případě rovnováhy musí být v 1 = v 2, tedy podíl obou rychlostních konstant vyjádřený pomocí rovnovážných koncentrací: K GW = k 1 /k 2 = ([C] r γ. [D] r δ) ) / ([A] r α. [B] r β ) musí být též konstanta, charakterizující danou reakci z hlediska rovnováhy. Takto definovaná rovnovážná konstanta (vyplývající z GW-zákona) má ale jednu závažnou nevýhodu – k jejímu výpočtu bychom museli znát jednotlivé parciální řády reakce a jejich zjištění bývá obtížné a zdlouhavé. Naštěstí můžeme ještě vyjít z faktu, že kromě podmínky stejných rychlostí musí v rovnováze též platit stechiometrické poměry a tak můžeme zadefinovat „pohodlnější“ rovnovážnou konstantu pomocí stechiometrických koeficientů: K =. [A] r a. [B] r b [C] r c. [D] r d Zpět

39 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Mějme vratnou chemickou reakci aA + bB ↔ cC + dD, u které se po dostatečně dlouhé době ustaví rovnováha charakterizovaná konstantou: K = ([C] c. [D] d) ) / ([A] a. [B] b ). Pokud je za daných podmínek takto určeno konečné složení reakční směsi, je otázkou, zda a jak můžeme ovlivnit výsledné složení. 1. vynucenou změnou koncentrace jedné z látek Toto je nejčastější ovlivňování složení výsledné směsi. V praxi se provádí většinou neustálým odčerpáváním (alespoň) jednoho z produktů. Má-li tedy být rovnovážná konstanta za daných podmínek nenulovou a my přitom tlačíme koncentraci jednoho z produktů a tedy i čitatele zlomku prakticky k nule, nutně se musí samovolně snížit i jmenovatel a tedy i součin koncentrací výchozích látek ve zlomku k nule. Např. u dismutace peroxidu vodíku: 2H 2 O 2 ↔ 2H 2 O +O 2 je rovnováha posunuta silně doleva. Jelikož se ale kyslík na pravé straně uvolňuje v nereaktivní dvouatomové molekule plynu a nemůže vstupovat do zpětné reakce, reakce doprava pokračuje až do úplného rozkladu peroxidu. To byl příklad samovolného ovlivnění rovnováhy. Příkladem vynuceného ovlivnění je např. přídavek hygroskopických látek při esterifikacích: alkohol + org.kyselina ↔ ester + voda. Tím, že trvale a účinně vážeme vedlejší produkt - vodu, posuneme rovnováhu až tak, že se esterifikace, jinak „velmi rovnovážná“ reakce, nakonec jeví jako jednosměrná. Zpět

40 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie 2. změnou teploty reakční směsi Takto můžeme významněji ovlivnit výsledné složení jen u reakcí výrazně exo- nebo endotermních. Jelikož K ~ K GW = k 1 /k 2, kde k x jsou rychlostní konstanty obou protisměrných reakcí, můžeme usoudit, že teplota bude mít přímo vliv na hodnotu rovnovážné konstanty. Obě protisměrné reakce totiž mají obecně jiné hodnoty frekvenčního faktoru a aktivační energie a tudíž i jinou teplotní závislost obou rychlostních konstant – viz Arrheniův vztah teplotní závislosti rychlostní konstanty. Můžeme říci, že reakci výchozí látky ↔ produkty posuneme zvýšením teploty doprava, bude-li tímto směrem endotermní a naopak doleva, bude-li exotermní. 3. změnou tlaku Takto můžeme ovlivnit výsledné složení jen u reakcí za účasti plynné fáze, u kterých navíc dochází ke změně molárního množství plynů (jinými slovy také objemů za konst. tlaku). Parciálních tlaky plynů úměrné celkovému tlaku jsou úměrné jejich koncentracím a tak se principiálně tento případ 3… stává případem 1… - ovlivnění rovnováhy koncentracemi. Příkladem může být průmyslová výroba čpavku: 3H 2 + N 2 ↔ 2NH 3. Jelikož se z původních 4 molů stávají 2, součet řádů reakce zleva doprava bude vyšší než reakce opačné (max. 2x) a zvýšení tlaku tak posílí reakci směrem k „nižší závislosti na koncentraci (tj. na parciálním tlaku)“, tedy k nižším řádům a bude tak preferovat právě reakci zleva doprava – vznik čpavku. Zpět

41 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Uvedené tři příklady ovlivnění rovnovážného složení směsi u vratných reakcí můžeme shrnout do obecné poučky, která se nazývá: le Chatelierův (a Braunův) princip akce a reakce : porušení termodynamické rovnováha vnějším zásahem do systému – akce – vyvolá děj – reakci – která působí proti účinkům onoho vnějšího zásahu. Jinými slovy můžeme říci – porušíme-li rovnováhu systému, systém se ji bude snažit opět dosáhnout opačnou změnou. Na předchozích případech si lze ukázat (praktickou) platnost tohoto principu: 1. snížíme-li koncentraci jednoho z produktů, systém zareaguje snížením koncentrace výchozích látek, aby obnovil rovnováhu. 2. zvýšíme-li teplotu při průběhu vratné reakce, systém se snaží absorbovat nadbytečné teplo a preferuje endotermní reakci vedoucí k opětnému snížení teploty. 3. zvýšíme-li tlak u vratné reakce plynů, u které dochází ke změně objemů, systém preferuje ten směr, který vede ke snížení objemu a tedy i ke snížení tlaku. Zpět

42 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Pro změny energetických veličin u vratných reakcí platí také následující dvě tvrzení, která jsou pro chemika nejdůležitější: 1) 1. termochemický (1. Hessův) zákon standardní změna volných enthalpií dvou protichůdných reakcí u vratné reakce výchozí látky ↔ produkty je až na znaménko stejná: ΔH 0 1 = - ΔH 0 2. Empirický důkaz tohoto tvrzení můžeme provést „sporem“: pokud by toto tvrzení u nějaké vratné reakce neplatilo, pak při ustavení dynamické rovnováhy by tu bylo buď tepelné „perpetuum mobile“ nebo tepelná „černá díra“, což by v důsledcích mj. výrazně urychlilo konec (ve smyslu nám známého vývoje) Vesmíru. 2) při ustavení rovnováhy jakékoli vratné reakce jsou změny veškerých druhů termodynamických energií nulové: ΔH = ΔG = ΔQ = ΔU =... = 0. Rovněž i zde můžeme provést obdobný empirický důkaz „sporem“. Další důležitou rovnicí je vztah mezi standardní změnou volné enthalpie a rovnovážnou konstantou: ΔG 0 = - R.T.ln(K), který říká, že rovnováha reakce bude tím více posunuta na stranu s nižší G (a tedy bude tím více „nevratnější“), čím je tato reakce exergonnější. Zpět

43 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Některé chemické reakce lze výrazně urychlit (nebo dokonce umožnit), když za daných podmínek přidáme do reakční směsi jinou látku, která se však reakcí, na rozdíl od výchozích látek, nikterak nespotřebovává a sama produkty netvoří. Takovýmto reakcím říkáme reakce katalyzované a oněm „nespotřebovávaným“ látkám říkáme katalyzátory. Mějme jednoduchou reakci: A + B ↔ prod. Katalyzátor (K) vstupuje do reakce tak, že s některou z výchozích látek (A) poměrně snadno utvoří meziprodukt zvaný aktivovaný komplex (KA*), který s další z výchozích látek reaguje na produkty mnohem snadněji, než ona původní látka A: A + K + B ↔ { AK* + B} ↔ K + prod. Ono v textu výše použité „snadno“ souvisí s aktivační energií reakce: ΔG – změna volné enthalpie reakce A+B  prod., zde záporná (exergonní reakce zleva doprava), NEZÁVISÍ na tom, zda je reakce katalyzovaná! E A – aktivační energie nekatalyzované reakce E A kat – aktivační energie katalyzované reakce, která je nižší, než u nekatalyzované o ΔE A. Je dobré si povšimnout, že u opačné reakce se aktivační energie (E A +ΔG) při použití katalyzátoru sníží o stejnou hodnotu ΔE A. ΔGΔG výchozí látky aktivovaný komplex E (G) EAEA E A kat reakční koordináta (směr reakce) produkty ΔEAΔEA Zpět

44 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Snížením aktivační energie reakce se zvyšuje počet částic s dostatečnou kinetickou energií ( nezvyšuje se jejich energie, snižuje se kritérium na ni ), kterou nezbytně musí tyto částice mít pro to, aby jejich srážky byly účinné. Tím katalyzátor danou reakci urychlí, neboť pravděpodobnost účinných srážek (oproti „neúčinným“) se zvýší. Při nízkých teplotách, kdy žádná částice onu kinetickou podmínku u nekatalyzované reakce nesplňuje, může dokonce katalyzátor takovýmto způsobem reakci vůbec umožnit ( pravděpodobnost účinných srážek stoupne z nuly na nenulovou hodnotu ). Proto jsou tedy tzv. biokatalyzátory neboli enzymy zcela nezbytné pro život, neboť za teploty běžné u organismů by většina biochemických reakcí buď vůbec neprobíhala nebo by probíhala příliš pomalu. Člověk však z podobných důvodů – tedy kvůli umožnění nebo urychlení reakcí při „rozumných“ teplotách – používá katalyzátory i v laboratořích nebo ve velkém rozsahu v průmyslu. Protože katalyzátor se teoreticky nijak reakcí nespotřebovává, můžeme ho použít i velmi malé množství ( viz též reakce nultého řádu ) a reakční směs bude přesto velice „výkonná“, neboť každá částice katalyzátoru vstupuje postupně do mnoha reakčních dějů. Jak lze vidět na obrázku energetického průběhu reakce, u vratných reakcí se katalýzou snižuje aktivační energie z obou stran reakce o stejný díl a tak se z obou stran stejně zvyšuje pravděpodobnost účinných srážek. To má za následek, že katalýza neovlivní rovnovážné složení směsi a pouze urychlí ustavení rovnováhy. Důkaz tvrzení z hlediska energetiky: jelikož ΔG zůstává nezměněná, nemůže se měnit ani hodnota K (ΔG = -R.T.ln(K) ). Zpět

45 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Katalýzu často rozdělujeme podle fází na homogenní (reaktanty, produkty i katalyzátor jsou ve stejné fázi) a na heterogenní. S homogenní katalýzou se setkáváme v biochemii, neboť enzymy, substráty i produkty jsou v roztoku ( sporné toto může být u enzymů či substrátů vázaných na membrány ). Heterogenní katalýza je potom obvyklá v průmyslu, kdy katalyzátory jsou často v pevném stavu ( přechodné kovy, oxidy,... ). V anorganické a hlavně v organické chemii hraje též velkou roli homogenní katalýza kyselá nebo bazická ( ve smyslu širší Lewisovy teorie kyselin a zásad ). Katalyzátory vykazují též určitou specifitu. Obvykle rozlišujeme specifitu reakční (jaký typ reakcí katalyzátor urychluje) a substrátovou (v reakci kterých látek se jeho katalytické vlastnosti mohou projevit). Toto má velký význam zvláště u enzymů, které často vykazují velmi vysokou substrátovou specifitu. Reakční specifita enzymů je potom základem nejběžnějšího dělení enzymů na oxidoreduktasy, transferasy, hydrolasy, lyasy, isomerasy a ligasy. U průmyslových katalyzátorů bývá substrátová specifita relativně nízká, zatímco reakční může být značně rozdílná (např. z jemně rozptýlených kovů je Pt dosti univerzálním katalyzátorem, Pd vyniká zvláště při hydrogenacích, Rh naopak při oxidacích kyslíkem...). Zpět

46 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Rychlost katalyzované reakce je závislá na množství „aktivního“ katalyzátoru. Jelikož katalyzátory jsou často přítomné ve velmi nízké koncentraci a jejich množství v gramech či molech navíc nezohledňuje ani jejich stav z hlediska účinnosti, často (zvláště pak v enzymologii) se uvádí spíše aktivita katalyzátoru (enzymu), vyjádřená nejlépe ve zlomcích molů přeměněné látky za sekundu (1 katal = 1mol/s). Výše zmíněný „stav“ (nebo „kondici“) katalyzátoru přidaného do reakční směsi mohou ovlivňovat různé látky – inhibitory katalýzy. Inhibitory mohou působit na účinnost katalyzátorů více způsoby. Mohou zablokovat aktivní místa na katalyzátoru tím, že o toto místo soupeří se substrátem (tzv. kompetitivní inhibice). Často mají k tomuto místu mnohem větší afinitu než substrát a katalyzátor tím vlastně zcela vyřadí. V laboratorní a průmyslové katalýze se jim říká katalytické jedy ( např. As snad pro všechny kovové katalyzátory a mnohé další ). Pokud je katalyzátorem „tvárná“ bílkovina, tedy enzym, může inhibitor natolik pozměnit konformaci enzymu tím, že se naváže mimo aktivní místo, až enzym ztratí účinnost. Tehdy mluvíme o nekompetitivní inhibici. Kromě uvedených mohou aktivitu katalyzátorů inhibitory snižovat i některými dalšími způsoby. Zpět

47 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Jako „makroskopický“ opak katalyzátorů působí na rychlost chemických reakcí inhibitory nebo stabilizátory. Mechanismus jejich působení je však zcela odlišný od katalyzátorů: nijak neovlivňují aktivační energii původní reakce, ale odčerpávají látku (látky) pro rychlost oné reakce důležité. Reagují tak např. s jednou z výchozích látek nebo třeba s nějakým meziproduktem bočnou parazitní reakcí a tím sníží rychlost původní reakce. Pokud reakci prakticky úplně zabrání, říkáme těmto inhibitorům stabilizátory. Příkladem použití inhibitorů je přídavek fosforečnanu sodného do sádry, chceme-li zpomalit její tuhnutí. Tuhnutí je primárně způsobeno srážením méně rozpustného dihydrátu (sádrovce) z vodného roztoku o trochu rozpustnějšího hemihydrátu (sádry). Rychlost tohoto srážení je úměrná iontovému součinu [Ca 2+ ].[SO 4 2- ] a pokud snížíme koncentraci vápenatých iontů jejich částečným a dočasným vyvázáním ve formě fosfátu, snížíme tím i rychlost krystalizace sádrovce. Uvedený iontový součin musí totiž být konstantní, takže přítomností fosfátových iontů posílíme protisměrné rozpouštění sádrovce. Příkladem použití stabilizátorů je přídavek chinonů do metylmetakrylátu, aby se zabránilo jeho polymeraci a předčasnému ztuhnutí této kapaliny. MMA totiž může nechtěně radikálově zpolymerovat např. i při osvětlení lahvičky slunečním světlem, neboť to v malém množství produkuje radikály MMA. Chinony však díky svému vysoce konjugovanému systému delokalizovaných π -elektronů působí jako vychytávače radikálů a „zneškodňují“ je rozptýlením nepárového elektronu do většího prostoru. Zpět

48 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je jen E. E – viz výklad: systémy otevřené, uzavřené a izolované. A – pojem stabilita se musí vztahovat k nějaké vlastnosti. Zde není nikterak specifikováno, v čem by systémy měly být stabilní či nestabilní. B – rovněž reverzibilita se musí vztahovat k nějaké vlastnosti či spíše ději (tedy změně vlastností) a není obecnou charakteristikou systému. Obecně mohou v systému probíhat současně jak děje reverzibilní, tak irreverzibilní. C – pevné, kapalné a plynné může být skupenství látky, nikde však není řečeno, že systém musí být homogenní z tohoto hlediska. Navíc není ani jmenováno čtvrté možné skupenství – plasma, přestože ta je ve Vesmíru zastoupena nejvíce. D – subatomární, atomární a molekulární mohou být částice hmoty resp. úroveň dějů, ale systém obecně není homogenní z tohoto hlediska. Navíc: molekuly obsahují i atomy a ty obsahují subatomární částice, takže toto dělení by bylo nesmyslné. Zpět

49 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A, B, C a E. A – teplota: neaditivní a absolutní veličina. Neaditivnost teploty je zřejmá. Smísíme-li 1 l vody o teplotě 25 0 C s 1 l vody o teplotě 35 0 C, nedostaneme výslednou teplotu jako součet původních teplot (60 0 C), ale jako jejich průměr, tedy 30 0 C. U obecné směsi různých látek je potom nutné onen průměr teplot ještě vynásobit poměrem tepelných kapacit a poměrem hmotností. B – objem: omezeně aditivní, absolutní. Omezenost aditivity objemu souvisí s hustotou a mísitelností. Objem směsi mísitelných látek s rozdílnou hustotou je menší, než součet objemů látek původních. Pro představu: smíchejte 1 l velkých fazolí s 1 l prosa a po promísení rozhodně nedostanete 2 l směsi! Ovšem 1 l a 1 l vody o stejné teplotě a tlaku poskytnou po smísení 2 l vody. C – tlak: neaditivní, absolutní. E – hmotnost: aditivní, absolutní. D – barva může být sice jistou vlastností daného systému, nepatří však mezi stavové termodynamické veličiny. I když subjektivně vnímanou barvu lze objektivizovat (formou spektra), termodynamiku tato vlastnost stejně nezajímá. Zpět

50 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A, B, D a E : A – dělení dějů dle změny enthalpie H. B – dělení dějů dle změny volné enthalpie G. D – díky vzájemné nezávislosti obou částí volné enthalpie může být děj samovolný (ΔG 0). Je to proto, že za dané teploty převáží kladná hodnota TΔS nad kladností ΔH. Příkladem může být rozpouštění soli na ledu, které při současném ochlazování systému může samovolně probíhat asi až do -21 o C. E – je-li ΔH -ΔH, bude i ΔG= ΔH-TΔS <0. (T je v kelvinech, tedy vždy kladné). C – jakýkoli děj může mít za následek buď jen kladnou nebo jen zápornou změnu volné enthalpie systému. Nemůže tedy být zároveň exergonní a endergonní. Zpět

51 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A, C a D. A, C a D – viz výklad, ze kterého odpovědi přímo vyplývají. B – chemické reakce jsou reakcemi týkajícími se elektronových obalů, nikoli jader. I když jaderné reakce mají prakticky vždy odezvu i na chemické úrovni, nejsou pro existenci naprosté většiny chemických reakcí potřeba. Poznámka: reakcemi následujícími po jaderné přeměně se zabývá radiochemie a radiační chemie. E – změny na úrovni nevazebných interakcí sice provázejí chemické reakce, k jejich průběhu však nejsou nezbytné. Jsou vždy následkem změn na úrovni vazebných interakcí. Zpět

52 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou všechny. A – dělení dle molekularity, B – dělení dle zúčastněných fází, C – proč ne? Reakce můžeme dělit dle libovolných kritérií. Např. právě toto dělení ve smyslu barevných změn při reakci může být užitečné z hlediska vhodnosti použití VIS-spektrofotometrie pro sledování průběhu reakcí... D – dělení dle typu částic účastnících se reakce, E – proč ne? Sice jde o velmi subjektivní dělení a těžko nějak užitečné, je ale také možné. Např. pro autora jsou obecně „nezajímavými“ reakcemi ty, které nejsou provázeny nějakými vnějšími pozorovatelnými efekty – změnou barvy, světlem, plamenem, vývojem dýmu, výbuchem,... ). Za chybná bychom měli považovat jen taková dělení, která kombinují různá kritéria ( např. dělení na „heterogenní a iontové“, „barevné a bimolekulární“ apod. ) nebo dělení neúplná, nevyčerpávající všechny možnosti. Zpět

53 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A a D. A – reakce je viditelně samovolná, tedy exergonní. Je též výrazně exotermní (jako všechna „hoření“) a dochází u ní také ke zvyšování entropie. Je-li tedy ΔS kladné a ΔH záporné, musí být ΔG o to zápornější. D – tato reakce musí být poměrně složitá, neboť obě látky spolu nemohou reagovat v molekulární podobě, ale nejprve musí dojít k rozbití vazeb H-H a (následně) O=O. Ze stechiometrie 2H 2 + O 2  2H 2 O rovněž vyplývá „vícečásticovost“ celkové reakce, takže toto hoření vodíku musí být sledem několika následných reakcí. B – při reakci se do okolí výrazně uvolňuje teplo, jde tedy o reakci exotermní. C – opak tvrzení D, které je pravdivé (viz zdůvodnění tam). E – reakce tri- a vícemolekulární nemohou existovat kvůli prakticky nulové pravděpodobnosti účinné srážky tří nebo více částic během „chemického času“. I když tedy celkově reagují spolu tři molekuly (2xH 2 a 1xO 2 ), proces je nutno rozdělit na sled maximálně bimolekulárních reakcí. Zpět

54 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A, B a D. A – rychlost reakce je přes reciprokou hodnotu příslušného stechiometrického koeficientu přímo úměrná záporné hodnotě časové změny koncentrace libovolné z výchozích látek (viz definici ve výkladu). B – rychlost reakce je přes reciprokou hodnotu příslušného stechiometrického koeficientu přímo úměrná hodnotě časové změny koncentrace libovolného z produktů (viz definici ve výkladu). D – rychlost reakce je definována tak, aby její stanovení nezáviselo na výběru látky účastnící se reakce pro kinetická měření ( proto tam jsou ony reciproké hodnoty stechiometrických koeficientů! ). C – dle definice není reakční rychlost žádným součtem „parciálních rychlostí“ či něčeho podobného. E – viz vysvětlení u D. Zpět

55 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je A, s omezením potom B a E. A – rychlost reakce je obecně významně závislá na teplotě. Ovšem u reakcí s kladnou hodnotou aktivační energie může být za relativně nízkých teplot rychlost nulová a tedy prakticky teplotně nezávislá. Platí to však jen v části teplotního oboru a nad určitou teplotou je již závislost rychlosti na teplotě značná (viz Arrheniův vztah pro teplotní závislost rychlostní konstanty). B – reakční rychlost může být měřitelně závislá na celkovém tlaku reakční směsi víceméně jen u reakcí, kterých se účastní plyny a mění se při nich molární množství plynných součástí reakce. E – rychlost reakce velkou většinou závisí na koncentraci alespoň jedné z výchozích látek. Ovšem u katalyzovaných reakcí, kdy jsou výchozí látky ve velkém nadbytku nad katalyzátorem, žádnou koncentrační závislost rychlosti na výchozích látkách nenaměříme a mluvíme o reakci nultého řádu. C, D – na objemu systému ani na hmotnosti systému (obojí míněno při stejném tlaku, teplotě a koncentracích látek) rychlost chemické reakce nezávisí. Ovšem i zde jsou diskutabilní výjimky, související s hmotnostně resp. objemově a „tvarově“ závislým vzrůstem teploty a tlaku u výrazně tepelně zabarvených velmi rychlých reakcí – např. u hoření výbušných látek. Jinou zjevnou rychlostí shoří 1g a jinou 10 kg střelného prachu v hromádce. Podobně jinou rychlostí shoří 10 kg střelného prachu ve formě koule a jinou ve formě 50 m dlouhé „cestičky“. Toto však nesouvisí s teorií rychlosti chemické reakce jako takové, ale s rychlostí šíření uvolněného tepla a rázové tlakové vlny v reakční směsi. Zpět

56 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Vyjdeme z obecné rychlostní rovnice pro tuto reakci: v = k. [A] α. [B] β. [C] γ. Pokud pro porovnávací rychlost v 0 byly použity ekvimolární koncentrace výchozích látek a pro měření parciálních řádů vždy o 1/5 vyšší koncentrace příslušné látky, tedy 1,2 násobek její původní, lze napsat pro poměry rychlostí po pokrácení stejných členů v čitateli a jmenovateli: v A /v 0 = k.[A] α.[B 0 ] β.[C 0 ] γ / k.[A 0 ] α.[B 0 ] β.[C 0 ] γ = (1,2.[A 0 ]/[A 0 ]) α : v A /v 0 = (1,2) α = 1,189, z čehož vyplývá α = log(1,189)/log(1,2) ~ 0,95, v B /v 0 = (1,2) β = 1,047, z čehož vyplývá β = log(1,047)/log(1,2) ~ 0,25, v C /v 0 = (1,2) γ = 1,189, z čehož vyplývá γ = log(1,189)/log(1,2) ~ 0,95, tedy α + β + γ = 2,15. Odpovědí na zadanou otázku tedy je: daná reakce má řád vzhledem ke složce A roven 0,95, vzhledem ke složce B roven 0,25 a vzhledem ke složce C roven 0,95 (tedy stejný jako pro A). Celkový řád reakce je potom roven 2,15. Zpět

57 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je E. E – první musí reagovat látka A s látkou C, protože pro obě tyto látky byly zjištěny stejné řády, zatímco pro látku B je řád odlišný a ona musí reagovat, tudíž, separátně. V úvahu tedy připadá z uvedených jen schéma: A + C → AC* s následným AC* → prod. Vyšší hodnoty řádů reakce vzhledem k A a C ukazují na vyšší koncentrační závislost na těchto výchozích látkách a tedy na to, že rychlost jejich vzájemné reakce je pro celkovou rychlost reakce podstatnější. Touto tzv. rychlost určující reakcí je u následných reakcí vždy ta nejpomalejší z nich. V extrémním případě, kdyby meziprodukt reagoval s B prakticky okamžitě po svém vzniku a tedy druhá reakce byla mnohem rychlejší než ta první (v 1 > v2) by šlo o reakci 1. řádu celkově i vzhledem k B a 0. řádu vzhledem k A a C. Ovšem vznik meziproduktu AC* z A a z C nemusí nutně být jednou elementární reakcí. Může jít i o sled několika následných reakcí (vč. např. přesmyku meziproduktu apod.). Totéž platí i pro druhou uvedenou reakci, která může jít přes nějaké další meziprodukty. V odpovědích však jiné potenciálně správné možnosti než tato nejjednodušší uvedeny nejsou. A, B, C a D – se vylučují se správnou odpovědí E. U odpovědi A je navíc nemožná i ona trimolekularita, bez ohledu na uvedená kinetická data. Zpět

58 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je D a E. D – s časem složení reakční směsi stále směřuje k ustavení rovnovážných poměrů koncentrací výchozích látek a produktů. I když se k tomuto poměru blíží reakční směs stále pozvolněji, po určitém čase již nejsme schopni nějaké změny koncentrací registrovat a říkáme, že se ustavila rovnováha. E – v čase t>0 jsou stále ve směsi přítomny jak výchozí látky, tak i produkty. Koncentrace vých. látek u vratných reakcí bez vnějšího zásahu nemůže klesnout k nulové, neboť ty se neustále tvoří z produktů. A – neznáme reakci, ať už vratnou nebo nevratnou, která by neměla rychlost závislou na teplotě ( pokud je ovšem rychlost měřitelná! ) B – reakce, kde se neúčastní látky v plynném skupenství, prakticky nejsou závislé na tlaku bez ohledu na to, zda jsou vratné či nevratné. Závislost reakční rychlosti na tlaku tedy nevypovídá o vratnosti či nevratnosti děje. C – samotná reakce neobrací svůj směr. Ta, která jde od výchozích látek k produktům se postupně zpomaluje, zatímco opačná reakce se zrychluje, a to vše do doby, než se jejich rychlosti vyrovnají. Zpět

59 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A, C a E. A a C, – viz výklad, ze kterého odpovědi přímo vyplývají. E – pokud (jak je ostatně zcela obvyklé) jsou na počátku reakce přítomny jen výchozí látky, v průběhu reakce koncentrace produktů vzrůstají z nuly a asymptoticky dosahují svého maxima při dosažení rovnováhy. V otázce se tiše předpokládá, že výchozími látkami jsou nazvány ty, které jsou na počátku sledování v nadbytku z hlediska rovnovážného stavu. Kdyby jejich koncentrace byly nižší než rovnovážné, říkali bychom jim produkty B – rovnováha je dynamický jev a obě protisměrné reakce probíhají neustále a donekonečna určitou nenulovou rychlostí : v 1 = v 2 ≠ 0 mol/s. D – pokud výrazně neovlivníme rovnováhu vnějším zásahem ( viz další otázky ), nemůže samovolně dojít k vyčerpání libovolné výchozí látky, neboť protisměrnou reakcí výchozí látky neustále vznikají z produktů. Zpět

60 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je C, K = 3. Výpočet: A + 2B → AB 2 ze zadání a ze stechiometrie vyplývá, že původní koncentrace zúčastněných látek a koncentrace v rovnováze budou: [B] 0 = 4 mol/l, [B] r = 1 mol/l a tedy: [A] 0 = 2 mol/l, [A] r = 0,5 mol/l a [AB 2 ] 0 = 0 mol/l, [AB 2 ] r = 2 mol/l – 0,5 mol/l = 1,5 mol/l. Dosazením rovnovážných koncentrací do definičního vzorce pro rovnovážnou konstantu tak dostaneme: Pozn.: v použitém vzorci a výpočtu se jeví určitá nekonzistentnost v užití jednotek. V definičním vzorci pro rovnovážnou konstantu bychom správně měli použít místo znaku pro koncentrace [X] znak pro jejich bezrozměrnou velikost (absolutní hodnotu): │ [X] │. S podobnou nekonzistentností se setkáváme mj. např. v definici pH. Takováto exaktnost by však vedla k znepřehlednění vzorců. K = [A] r a. [B] r b [C] r c = 0, ,5 1 = 3. Zpět

61 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je C. Výpočet: ze zadání a ze stechiometrie vyplývá, že původní koncentrace zúčastněných látek a koncentrace v rovnováze budou: [A] 0 = 1 mol/l, [C] 0 = 0 mol/l a tedy: [A] r = x mol/l, [C] r = (1-x) mol/l. Dosazením do definičního vzorce pro rovnovážnou konstantu tak dostaneme: K = [A] r a [C] r c = x1x1 (1-x) 1 = 9 ==> x = 0,1 a tedy [A] r = 0,1 mol/l a [C] r = 0,9 mol/l. Zpět

62 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je B, s výhradami A. B – složení rovnovážné směsi u vratných reakcí můžeme téměř vždy ovlivnit odebíráním alespoň jedné ze zúčastněných látek – obvykle jednoho z produktů. Toto ovlivnění vyplývá z „konstantnosti“ rovnovážné konstanty. U některých reakcí můžeme výrazněji ovlivnit složení ještě např. teplotou (u reakcí silně tepelně zabarvených) nebo tlakem (u reakcí za účasti plynů, kdy dochází ke změně látkového množství plynných látek. Pokud ovšem všechny reagovat za daných podmínek mohou). Výjimkou jsou jen reakce, kdy alespoň jeden z produktů vzniká v takové formě, že se zpětné reakce již nemůže zúčastnit. Příkladem takových výjimek jsou reakce, při kterých se vylučují za daných okolností málo reaktivní plyny (např. H 2, O 2, N 2, CH 4, …). Reakce se tak jeví jako prakticky jednosměrná (teoreticky je ovšem vratná) a my ji „otočit“ nemůžeme. Klasickým příkladem může být reakce peroxidu vodíku s manganistanem v kyselém prostředí. Termodynamicky by tato reakce měla být vratná s rovnováhou posunutou „doleva“, jak vyplývá z porovnání standardních redukčních potenciálů obou látek. Správnost odpovědi B nebo A závisí na exaktnosti chápání pojmu vratná reakce a tak ani odpověď A nelze jednoznačně označit za nesprávnou. (A), C a D – se vylučují se správnou odpovědí B. Zpět

63 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou B a C. B – reakce směrem zleva doprava – vznik vody - snižuje látkové množství a tedy i objem plynných látek (3  2) a tak snížení tlaku podpoří opačnou reakci. Bude-li tedy tlak dostatečně nízký ( v případě této velice exergonní reakce musí být dosti blízký nule, navíc při dostatečně vysokých teplotách ), poměr množství výchozích látek ku množství produktů bude nezanedbatelný. C – reakce je výrazně exotermní, takže zvýšení teploty na vysokou hodnotu ( v tomto případě na více než cca 2000 K ) ji může „otočit“ ve prospěch výchozích látek. ( To také byla hlavní příčina výbuchu černobylského reaktoru: přehřátím některých palivových článků až nad 3000 K vzniklo z chladicí vody velké množství vodíku a kyslíku, které se potom v chladné části reaktoru pod víkem (cca K) explozivně sloučily zpět na vodu.) A a D – vylučují se se správnými odpověďmi B a C. E – teoreticky žádná reakce není zcela jednosměrná. Prakticky se za nevratné považují reakce za daných podmínek silně exergonní nebo takové, jejichž produkty již nemohou z nějakých příčin vstupovat do reakce opačné. Buď vznikají v nereaktivní formě, nebo jsou odčerpávány či blokovány. Zpět

64 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správná odpověď je pouze D. D – v rovnováze jsou veškeré energetické změny nulové! Pokud by změna byť i jediné termodynamické energie byla nenulová, nutila by reakci pokračovat ve směru svého snížení a tím by porušovala rovnováhu. Je přitom úplně jedno, zda se jedná o reakci exo- či endotermní nebo exergonní či endergonní. A, B, C a E – se vylučují se správnou odpovědí D. Zpět

65 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Správné odpovědi jsou A a C. A – u takovéhoto dělení mluvíme o homogenních a nehomogenních katalyzátorech resp. o homogenní a heterogenní katalýze. C – u takovéhoto rozdělení mluvíme o reakční specifitě. B – katalyzátory se reakcí v principu nemění ( i když se také časem „opotřebovávají“, podle čehož by se případně daly dělit - tedy podle své životnosti, měřené např. průměrným počtem reakčních cyklů, kdy si ještě zachovají účinnost ) a tak je takto nelze dělit. D – katalyzátory neovlivňují celkové energetické změny chemické reakce a tudíž je podle takového kritéria nemůžeme dělit. E – katalyzátory neovlivňují rovnovážné složení v reakční směsi a tak nemohou ovlivňovat výtěžek produktů. Zpět

66 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Žádná z odpovědí není správná. A – i kdyby se nalezla látka zvyšující aktivační energii nějaké reakce, stejně by její přídavek reakci nezpomalil. Proč by si totiž reakce vybrala cestu s vyšší E A, když může přednostně probíhat tou původní, s nižší E A ? B – žádná látka nemůže změnit tepelné zabarvení reakce probíhající z určitých reaktantů na určité produkty, neboť toto zabarvení nezávisí na cestě – 2. termochemický (2. Hessův) zákon! C – žádná látka nemůže změnit tlakové poměry reakce, která má za následek vždy určité rovnovážné složení reakční směsi. Pokud by taková látka ab(ad)sorbovala nějakou z látek, posune i rovnováhu. A látku aktivně měnící složení reakční směsi nenazýváme inhibitorem nebo stabilizátorem. D – inhibitory a stabilizátory reakcí se v tomto případě vztahují na obecné, nekatalyzované reakce, jinak bychom mluvili o inhibitorech katalýzy. E – žádná látka nemůže „obracet“ vratnou reakci, aniž by změnila rovnovážné složení reakční směsi. Zpět

67 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie N E !!! Zpět

68 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie A n o. Zpět

69 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Ano, také. Zpět

70 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Ano, někdy. Zpět

71 Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Opravdu chcete skončit ? NeAno


Stáhnout ppt "Lékařská fakulta v Hradci Králové Univerzita Karlova Podpora pro seminář Ústav lékařské biochemie Seminář č. 3 Termodynamika a chemické reakce S p u s."

Podobné prezentace


Reklamy Google