Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Číslo projektu Číslo materiálu název školy Autor Tématický celek
CZ.1.07/1.5.00/ Číslo materiálu DUM 2-Orientovaná úsečka. Vektor. název školy Střední škola a Vyšší odborná škola cestovního ruchu, Senovážné náměstí 12, České Budějovice Autor PaedDr.Alena Chalupová Tématický celek Analytická geometrie Ročník 2.-nástavbové studium, 4.-HŠ Datum tvorby Říjen 2012 Střední škola a Vyšší odborná škola cestovního ruchu, Senovážné náměstí 12, České Budějovice
2
Anotace: Prezentace vysvětlí pojmy orientovaná úsečka a vektor,
definuje souřadnice vektoru definuje velikost vektoru obsahuje ukázkově řešené příklady k procvičení daného učiva Metodické pokyny: výukový materiál
3
Orientovaná úsečka. Vektor.
Analytická geometrie Orientovaná úsečka. Vektor.
4
Orientovaná úsečka je úsečka, která má určený počáteční a koncový bod, značíme ji AB. Její velikost je definovaná jako vzdálenost jejích krajních bodů. Nulová orientovaná úsečka je úsečka, u níž počáteční a koncový bod splývají Její velikost je 0.
5
Vektor je množina všech orientovaných úseček, které mají stejný směr, velikost a orientaci
6
Nulový vektor je množina všech nulových orientovaných úseček, značíme ho
Každá orientovaná úsečka ze všech orien- tovaných úseček určujících týž vektor, se nazývá umístění vektoru Opačný vektor k vektoru , jehož umístěním je úsečka AB, je vek- tor , jehož umístěním je úsečka BA
7
Poznámka: orientované úsečky AB a CD určují týž vektor právě tehdy, když středy úseček AD a BC splývají, tj. pro krajní body úseček platí každý vektor je určen rozdíly příslušných souřadnic krajních bodů jeho libovolného umístění
8
Příklad 1-zadání: Je dán pravidelný šestiúhelník ABCDEF se
středem S. Napište všechny orientované úsečky s krajními body v jeho vrcholech a středu, které určují vektor , jehož umístěním je orientovaná úsečka AB DS
9
Příklad 1-řešení: a) AB FS SC ED b) DS SA EF CB
10
Příklad 2-zadání: Jsou dány body A=3, -5; B=-2,1; C=2,1;
Zjistěte, zda orientované úsečky AB a CD jsou umístěním téhož vektoru.
11
Příklad 2-řešení: orientované úsečky AB
Zjistíme, zda středy úseček AD a BC splývají: orientované úsečky AB a CD nejsou umístěním téhož vektoru.
12
Souřadnice a velikost vektoru:
Souřadnice vektoru , jehož umístěním je orientovaná úsečka s počátečním bodem a koncovým bodem jsou čísla Symbolicky zapisujeme
13
Příklad 3-zadání: Jsou dány body A=3, -5; B=-2,1; C=2,1; D=7, -4. Určete souřadnice vektorů
14
Příklad 3-řešení: A=3, -5; B=-2,1; C=2,1; D=7, -4.
15
Velikost vektoru: Velikost vektoru je rovna délce orientované úsečky, která je jeho umístěním , tj.
16
Příklad 4-zadání: Jsou dány body A=3, -5; B=-2,1; C=2,1;
Určete velikosti vektorů z příkladu 3.
17
Příklad 4-řešení:
18
Použitá literatura: Vlastní archiv autora
CALDA, Emil. Matematika pro netechnické obory SOŠ a SOU. 1. vyd. Praha: Prometheus, 1999, 208 s. Učebnice pro střední školy (Prometheus). ISBN JIRÁSEK, František. Sbírka úloh z matematiky: pro SOŠ a studijní obory SOU. 1. vyd. Praha: Státní pedagogické nakladatelství, 1989, 479 s. Učebnice pro střední školy (Státní pedagogické nakladatelství). ISBN
19
Děkuji za pozornost.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.