Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilRadomír Neduchal
1
Časové řady vznikají při sledování veličiny (Y) v čase (t) vznikají při sledování veličiny (Y) v čase (t) hodnoty: y 1, y 2,…,y T hodnoty: y 1, y 2,…,y T neboli: { y t ; t=1,…T } neboli: { y t ; t=1,…T } Y…veličina (ukazatel) libovolného typu, nejčastěji ale číselná spojitá Y…veličina (ukazatel) libovolného typu, nejčastěji ale číselná spojitá věcné a místní vymezení (co, kde) věcné a místní vymezení (co, kde)
2
Časové řady Příklady: denní tržby v daném obchodě denní tržby v daném obchodě měsíčně počet zaměstnanců firmy měsíčně počet zaměstnanců firmy čtvrtletní míra nezaměstnanosti v regionu čtvrtletní míra nezaměstnanosti v regionu roční míra inflace v zemi roční míra inflace v zemi
3
Časové řady - typy a) dle shody dob mezi údaji: ekvidistantní…každé období stejně dlouhé neekvidistantní…existují rozdíly b) dle délky doby mezi údaji: krátkodobé – střednědobé – dlouhodobé jasnější je konkr. vymezení, nejčastěji: denní – týdenní – měsíční – čtvrtletní – roční – pětileté – …
4
Časové řady - typy c) dle (ne)kumulativnosti údajů: okamžikové…údaj = stav k danému okamžiku; (jednotlivé hodnoty nemá smysl kumulovat=sčítat) intervalové…údaj za celou dobu (interval) t; (jednotlivé hodnoty má smysl kumulovat=sčítat, kumulací vznikají souhrny za více období) Např. u automobilky: počet zaměstnanců k poslednímu dni každého měsíce; počet vozů vyrobených za každý měsíc ? kde je ekvidistantnost nutnější ?
5
Časové řady - typy d) dle vzniku údajů: základní…údaj byl přímo zjištěn (změřen…) odvozené…údaj nutno vypočítat Např. každoročně určovaná hustota obyvatel - odvozeno vždy z rozlohy a počtu obyvatel
6
Časové řady - jejich složky ČŘ mohou vykazovat trend ČŘ mohou vykazovat trend = systematické „směřování“ trend často patrný již z grafu trend často patrný již z grafu Př. vývoj průměr- né hrubé měsíční nominální mzdy v Ústeckém kra- ji (roky 2004-08)
7
Časové řady - jejich složky ČŘ (delší) mohou vykazovat periodické chování = opakované výkyvy ČŘ (delší) mohou vykazovat periodické chování = opakované výkyvy i toto často patrné již z grafu i toto často patrné již z grafu Př. průměrné čtvrtletní výdaje na osobu, SRN (roky 1985-87) - v tehdejších „záp.“ markách
8
Časové řady - jejich složky ČŘ vždy vykazují nahodilé chování = náhodné výkyvy (nikdy neleží např. přesně na přímce popisující trend) ČŘ vždy vykazují nahodilé chování = náhodné výkyvy (nikdy neleží např. přesně na přímce popisující trend) označme jednotlivé složky: označme jednotlivé složky: Y t … model trendu S t … model periodického chování e t … náhodná složka
9
Časové řady - jejich složky tzv. aditivní model předpokládá: tzv. aditivní model předpokládá: y t = Y t + S t + e t cíle zpracování ČŘ = cíle zpracování ČŘ = deskripce (→pochopení) deskripce (→pochopení) analýza jednotlivých složek (→ model) analýza jednotlivých složek (→ model) predikce (= předpověď do budoucna ) predikce (= předpověď do budoucna )
10
Časové řady - deskripce Absolutní přírůstek (diference1.řádu) d t = y t − y t−1 t = 2,…,T o kolik se hodnota liší oproti předešlé (v týchž měrných jednotkách jako Y) d t > 0 … došlo k nárůstu d t < 0 … došlo k poklesu
11
Časové řady - deskripce Průměrný absolutní přírůstek _ d = (d 2 +d 3 +…+d T ) / (T−1) = = (y T −y 1 ) / (T−1) = (y T −y 1 ) / (T−1) zda „převažuje“ nárůst či pokles (ale pozor – vliv krajních hodnot!)
12
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. rok mzda absolutní přírůstek 04 15 322 x 05 16 345 1 023 06 17 113 768 07 19 606 2 493 08 20 962 1 356 _____ _____ d = (1023+768+2493+1356) / 4 = 1410; = (20962−15322) / 4 = 1410 = (20962−15322) / 4 = 1410
13
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. _____ _____ d = 1410 Interpretace? V průměru došlo ve sledovaném období každoročně k nárůstu mzdy o 1.410,- Kč oproti roku předešlému.
14
Časové řady - deskripce Koeficient růstu (řetězový index) k t = y t / y t−1 t = 2,…,T kolikrát se hodnota liší oproti předešlé (lze vyjádřit v %); jen pro Y>0 k t > 1 … došlo k nárůstu k t < 1 … došlo k poklesu např. k t =0,97 … pokles Y o 3 %
15
Časové řady - deskripce Průměrný koeficient růstu _ k = T−1 √(k 2 ·k 3 ·…·k T ) = = T−1 √(y T /y 1 ) = T−1 √(y T /y 1 ) zda „převažuje“ nárůst či pokles (ale pozor – vliv krajních hodnot!)
16
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. rok mzda koeficient růstu 04 15 322 x 05 16 345 1,067 06 17 113 1,047 07 19 606 1,146 08 20 962 1,069 /vše zaokr./ ___ ___ k = 4 √(1,067·1,047·1,146·1,069) = 1,082; = 4 √(20 962 / 15 322) = 1,082 = 4 √(20 962 / 15 322) = 1,082
17
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. ____ ____ k = 1,082 Interpretace? V průměru došlo ve sledovaném období každoročně k nárůstu mzdy o 8,2 % oproti roku předešlému.
18
Časové řady - deskripce Relativní přírůstek r t = d t / y t−1 = k t −1 t = 2,…,T o kolik % se hodnota liší oproti předešlé (po vynásobení 100); jen pro Y>0 r t > 0 … došlo k nárůstu r t < 0 … došlo k poklesu např. r t = -0,03 … pokles Y o 3 %
19
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. rok mzda relativní přírůstek 04 15 322 x 05 16 345 0,067 06 17 113 0,047 07 19 606 0,146 08 20 962 0,069 /vše zaokr./ např. v roce 2007 došlo k nárůstu mzdy o 14,6 % oproti roku předešlému
20
Časové řady - deskripce POZOR při interpretaci % změn! Např.: POZOR při interpretaci % změn! Např.: rok k t r t.. 06 1,047 0,047 07 1,146 0,146 změna mezd v roce 07 vůči roku 06? pomocí k t : 1,146 − 1,047 = 0,099 ! nešlo o nárůst mzdy o 9,9 % ! (ta vzrostla o 14,6 % proti roku 2006) šlo o tzv. nárůst o 9,9 procentního bodu
21
Časové řady - deskripce Bazický index b t = y t / y 0 t = 1,…,T o kolik % se hodnota liší oproti bazické (po vynásobení 100); jen pro Y>0 b t > 1 … došlo k nárůstu oproti y 0 b t < 1 … došlo k poklesu oproti y 0
22
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. rok mzda bazický index (0=2004) 04 15 322 1,000 05 16 345 1,067 06 17 113 1,117 07 19 606 1,280 08 20 962 1,368 /vše zaokr./ např. v roce 2007 vzrostla mzda o 28 % oproti roku 2004 (oproti roku bazickému)
23
Časové řady - deskripce Ppřevody mezi indexy? k t = b t / b t−1 t = 2,…,T a naopak (ale jen když báze=1.období): b t = k 2 ·…·k t t = 2,…,T
24
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. rok k t b t (0=2004) 04 x 1,000 05 1,067 1,067 06 1,047 1,117 07 1,146 1,280 08 1,069 1,368 /vše zaokr./ k 4 = b 4 /b 3 = 1,280 / 1,117 = 1,146 k 4 = b 4 /b 3 = 1,280 / 1,117 = 1,146 b 4 = k 2 ·k 3 ·k 4 = 1,067·1,047·1,146 = 1,280 b 4 = k 2 ·k 3 ·k 4 = 1,067·1,047·1,146 = 1,280
25
Časové řady - deskripce Diference druhého řádu D t = d t − d t−1 = y t −2y t−1 +y t−2 (t=3…T) popisují „vyklenutí“ časové řady D t >0…průběh na úseku mezi hod- notami y t−2, y t−1, y t je konvexní D t <0…průběh na úseku mezi hod- notami y t−2, y t−1, y t je konkávní
26
Časové řady - deskripce Př. Průměrné hrubé měsíční nominální mzdy v Ústeckém kraji za roky 2004-08. rok d t D t 04 x x 05 1023 x 06 768 -255 07 2493 1725 08 1356 -1137 kladná je pouze D 4 ; na grafu měla pouze trojice období 2.-3.-4. konvexní průběh
27
Časové řady - deskripce kladná je pouze D 4 ; na grafu měla pouze trojice období 2.-3.-4. konvexní průběh
28
Časové řady - vyhlazení model pro vyhlazení (vyrovnání) časové řady = snaha odhalit trendovou složku Y t spočívá v „odfiltrování“ náhodných i pravidelných vlivů (odchylek, výkyvů) možnosti: klouzavé průměry regresní model atd. (složitější metody)
29
Časové řady - vyhlazení a) klouzavé průměry - princip zvolíme K - délku klouzavého okna (=počet průměrovaných hodnot) zvolíme K - délku klouzavého okna (=počet průměrovaných hodnot) určíme průměr každé K-tice po sobě jdoucích hodnot : určíme průměr každé K-tice po sobě jdoucích hodnot : (y t +…+y t+K-1 ) / K
30
Časové řady - vyhlazení Klouzavé průměry - poznámka: Hodnotu K volíme s ohledem na případnou periodičnost, či aspoň „logiku“ : např. denní údaje … K=7; čtvrtletní údaje …K=4
31
Časové řady - vyhlazení Klouzavé průměry - příklad: Řadu čtvrtletních výdajů na osobu v SRN za roky 1985-87 vyrovnejte metodou klouzavých průměrů. 1. Jelikož údaje jsou čtvrtletní a navíc na grafu (viz dříve) byl každé čtvrté období patrný výkyv, zvolíme K=4.
32
Časové řady - vyhlazení Klouzavé průměry – data: t 1 2 3 4 5 6 t 1 2 3 4 5 6 y t | 3336 | 3469 | 3536 | 3860 | 3452 | 3670 pokračování - data: t 7 8 9 10 11 12 t 7 8 9 10 11 12 y t | 3674 | 3999 | 3540 | 3751 | 3776 | 4150
33
Časové řady - vyhlazení Klouzavé průměry - příklad: 2. Počítáme průměr pro první čtveřici údajů: (y 1 +…+y 4 ) / 4 = = ( 3336+3469+3536+3860 )/4 = 3550,25 výsledek formálně přiřadíme středu průměrovaného období (střed 1-4 je číslo 2,5) => Y 2,5 = 3550,25 výsledek formálně přiřadíme středu průměrovaného období (střed 1-4 je číslo 2,5) => Y 2,5 = 3550,25
34
Časové řady - vyhlazení Klouzavé průměry - příklad: 3. „sklouzneme“ o období doprava: (y 2 +…+y 5 ) / 4 = = ( 3469+3536+3860+3452 )/4 = 3579,25 = ( 3469+3536+3860+3452 )/4 = 3579,25 výsledek formálně přiřadíme středu průměrovaného období (střed 2-5 je číslo 3,5) => Y 3,5 = 3579,25 výsledek formálně přiřadíme středu průměrovaného období (střed 2-5 je číslo 3,5) => Y 3,5 = 3579,25
35
Časové řady - vyhlazení Klouzavé průměry - příklad: 4. atd., po posledním „sklouznutí“: (y 9 +…+y 12 ) / 4 = = ( 3540+3751+3776+4150 )/4 = 3804,25 = ( 3540+3751+3776+4150 )/4 = 3804,25 výsledek formálně přiřadíme středu průměrovaného období (střed 9-12 je číslo 10,5) => Y 10,5 = 3804,25 výsledek formálně přiřadíme středu průměrovaného období (střed 9-12 je číslo 10,5) => Y 10,5 = 3804,25
36
Časové řady - vyhlazení Klouzavé průměry – graf :
37
Časové řady - vyhlazení Klouzavé průměry – zpracování v Excelu: I.198513336 II.198523469 III.198533536 IV.198543860 I.198653452 II.198663670 III.198673674 IV.198683999 I.198793540 II.1987103751 III.1987113776 IV.1987124150
38
Časové řady - vyhlazení Klouzavé průměry – zpracování v Excelu:
39
Časové řady - vyhlazení Klouzavé průměry – poznámky : i) srovnejte graf výsledných klou- zavých průměrů s grafem původ- ních dat; povedlo se vyhlazení? ii) pozor – ne každý vypočtený klouzavý průměr byl „ročním“ průměrem za nějaký kalendářní rok (najdete je?)
40
Časové řady - vyhlazení b) regresní model - princip veličinou X je čas (pořadové číslo t) veličinou X je čas (pořadové číslo t) zbytek zcela dle teorie o regresi zbytek zcela dle teorie o regresi
41
Časové řady - vyhlazení Regresní model - příklad: Řadu ročních mezd v Ústeckém kraji proložit vhodným regresním modelem. 1. Jelikož údaje vykazovaly na grafu (viz dříve) cca lineární průběh, zvolíme „model přímky“.
42
Časové řady - vyhlazení Regresní model – data : rok 2004 2005 2006 2007 2008 x 1 2 3 4 5 x 1 2 3 4 5 y 15322 16345 17113 19606 20962 y 15322 16345 17113 19606 20962 2. Spočteme parametry regresní přímky b 1 =1454,1 b 0 =13507,3
43
Časové řady - vyhlazení Regresní model – výsledky : 3. Nalezený model Y = 13507,3 + 1454,1·X, kde za X dosazujeme pořadové číslo roku (X=1 pro 2004,…)
44
Časové řady - vyhlazení Regresní model – komentáře : i) interpretace směrnice (1454,1)? Během sledovaného období došlo každý rok v průměru k nárůstu mzdy o 1 454,1 Kč (porovnat s průměrným abs.přírůstkem)
45
Časové řady - vyhlazení Regresní model – komentáře : ii) využití pro predikci (předpověď)? Do modelu dosadíme za X hodnotu odpovídající dosud nesledovanému období, zde např. X=6 (pro rok ’09): Y=13507,3+1454,1·6 = 22 231,9 (neaplikovat do vzdálené budoucnosti!)
46
Časové řady - periodičnost model pro periodickou složku S t model pro periodickou složku S t (je-li přítomna) spočívá v „napojení“ na složku trendovou často je periodičnost dána vlivem ročních dob (sezón) => „sezónnost“ často je periodičnost dána vlivem ročních dob (sezón) => „sezónnost“ možnosti modelování: nejčastěji tzv. sezónní indexy nejčastěji tzv. sezónní indexy (=multiplikativní, nikoli aditivní model)
47
Časové řady - periodičnost sezónní index – postup určení a) pro každé období určíme hodnotu odhadu dle modelu trendu (Y t ); b) pro každé období spočteme hodnotu indexu y t /Y t udávající, koli- krát (o kolik %) byly skutečné hod- noty modelem nad-/podhodnoceny
48
Časové řady - periodičnost sezónní index – postup určení c) pro odpovídající si období v rámci jednotlivých period (např. každé první období) určíme z jednotlivých indexů jejich geometrický průměr
49
Časové řady - periodičnost sezónní index - př.(čtvrtletní výdaje) Pro data (zadání viz př. s klouzavý- mi průměry) lze spočítat tento lineární model trendu: Y t = 3382,9 + 46,4·X ( zaokrouhl.) kde za X dosadíme postupně pořadová čísla 1-12 a dostaneme:
50
Časové řady - vyhlazení Lineární trend – zpracování v Excelu: I.198513336 II.198523469 III.198533536 IV.198543860 I.198653452 II.198663670 III.198673674 IV.198683999 I.198793540 II.1987103751 III.1987113776 IV.1987124150
51
Časové řady - vyhlazení Lineární trend – zpracování v Excelu:
52
Časové řady - periodičnost x=t 1 2 3 4 5 6. y t | 3336 | 3469 | 3536 | 3860 | 3452 | 3670 Y t | 3429 | 3476 | 3522 | 3568 | 3615 | 3661 x=t 7 8 9 10 11 12. y t | 3674 | 3999 | 3540 | 3751 | 3776 | 4150 Y t | 3708 | 3754 | 3800 | 3847 | 3893 | 3940 (hodnoty Y t zaokrouhlovány)
53
Časové řady - periodičnost sezónní index - př.(čtvrtletní výdaje) Soustřeďme se např. na zimní údaje (tedy x=4,8,12; Y t zaokr. na 3 des.m.): x 4 8 12. y t | 3860 | 3999 | 4150. Y t | 3568,446 | 3753,999 | 3939,551
54
Časové řady - periodičnost sezónní index - př.(čtvrtletní výdaje)
55
Časové řady - periodičnost sezónní index - př.(čtvrtletní výdaje) Příslušné tři indexy y t /Y t jsou: (x=4) 3860 / 3568,446 = 1,082 (x=8) 3999 / 3753,999 = 1,065 (x=12) 4150 / 3939,551 = 1,053 Např. během první zimy byly skutečné výdaje 8,2 % nad modelem lin.trendu
56
Časové řady - periodičnost sezónní index - př.(čtvrtletní výdaje) Celkově činí „zimní“ sezónní index: 3 √(1,082·1,065·1,053) = 1,067 Tj. průměrně během každé zimy byly skutečné výdaje 6,7 % nad modelem lin.trendu.
57
Časové řady - periodičnost sezónní index – využití? Proveďme odhad pro nezazname- nanou zimu 1988 (tj. x=16): Y 16 = 3382,9+46,4·16 = 4125,104 víme ale, že zimní údaje bývají o 6,7 % vyšší, než je odhad trendem, tj. upravíme odhad na hodnotu: 4125,104 · 1,067 = 4400,383
58
Časové řady – zdroj dat? ČSÚhttp://www.czso.cz/EUROSTAThttp://epp.eurostat.ec.europa.eu/ (viz e-Sbírka: OBSAH-DALŠÍ ODKAZY)
59
Časové řady – zdroj dat?
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.