Goniometrické funkce Sinus Nutný doprovodný komentář učitele.

Slides:



Advertisements
Podobné prezentace
V PRAVOÚHLÉM TROJÚHELNÍKU
Advertisements

Goniometrické funkce Tangens Nutný doprovodný komentář učitele.
POZNÁMKY ve formátu PDF
Sestrojení úhlu o velikosti 60° pomocí kružítka.
Matematika Trojúhelník.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Goniometrické funkce Sinus ostrého úhlu
Výukový materiál byl zpracován v rámci projektu
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Goniometrické funkce Autor © Mgr. Radomír Macháň
Obvod a obsah rovinného obrazce III.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Mgr. David Vencl Číslo projektuCZ.1.07/1.4.00/ Šablona klíčové aktivityIII/2 SadaMatematika NázevSinus - cvičení Klíčová slova Goniometrické funkce,
Úsečky v trojúhelníku 2 Výšky trojúhelníku
Goniometrické funkce Kotangens ostrého úhlu
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
57.1 Goniometrické funkce a jejich vlastnosti II.
PYTHAGOROVA VĚTA PŘÍKLADY
Goniometrické funkce funkce sinus
V PRAVOÚHLÉM TROJÚHELNÍKU
TROJÚHELNÍK ROVNORAMENNÝ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
1 GONIOMETRICKÉ FUNKCE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Sestrojení úhlu o velikosti 90° pomocí kružítka.
KOSOČTVEREC 1. ZÁKLADNÍ VLASTNOSTI KOSOČTVERCE
PROVĚRKY Převody jednotek času.
Konstrukce trojúhelníku podle věty sss vytvořená v Zoneru Callisto Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné.
Matematický rychlokvíz 2 Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alena Čechová. Dostupné z Metodického portálu ISSN: , financovaného.
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
Lichoběžníky a jejich vlastnosti
PYTHAGOROVA VĚTA Věta k ní obrácená
Vnitřní a vnější úhly v trojúhelníku
Lichoběžníky a jejich vlastnosti
Goniometrické funkce Tangens Nutný doprovodný komentář učitele.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
SINUS OSTRÉHO ÚHLU PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
Goniometrické funkce Autor © Mgr. Radomír Macháň
TROJÚHELNÍK Druhy trojúhelníků
TROJÚHELNÍK ROVNOSTRANNÝ
Konstrukce pravoúhlého trojúhelníku pomocí Thaletovy kružnice,
Lichoběžníky a jejich vlastnosti
TROJÚHELNÍK ROVNORAMENNÝ
Konstrukce trojúhelníku podle věty sus
PYTHAGOROVA VĚTA Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Konstrukce trojúhelníku
TROJÚHELNÍK Druhy trojúhelníků
Převody jednotek délky - 2.část
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
1. ZÁKLADNÍ VLASTNOSTI ČTVERCE 2. OBVOD A OBSAH ČTVERCE – SLOVNÍ ÚLOHY
Konstrukce trojúhelníku
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Konstrukce trojúhelníku
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
TROJÚHELNÍK Druhy trojúhelníků
Úsečky v trojúhelníku 3 Těžnice trojúhelníku
PYTHAGOROVA VĚTA Věta k ní obrácená
TROJÚHELNÍK ROVNOSTRANNÝ
Shodnost rovinných útvarů Shodnost trojúhelníků
Transkript prezentace:

Goniometrické funkce Sinus Nutný doprovodný komentář učitele. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Goniometrické funkce ostrého úhlu A B C a b c Pravoúhlý trojúhelník: Z pohledu úhlu a: c – přepona a – protilehlá odvěsna b – přilehlá odvěsna

SINUS Sinus (sin) vnitřního ostrého úhlu libovolného pravoúhlého trojúhelníku je poměr délky protilehlé odvěsny tohoto úhlu k délce přepony. A B C a b c Úkol Zapiš sinus úhlu b.

Každému ostrému úhlu přísluší právě jedna hodnota funkce sinus. Poznámka: sinus ostrého úhlu je vždy menší než 1. Proč? Protože délka odvěsny je vždy menší než délka přepony  a:c < 1 (pro úhel a)

Sinus úhlu nakreslíme z průsečíku úhlu a kružnice kolmici k ose x Jednotková kružnice => poloměr a tedy přepona =1 Sinus úhlu nakreslíme z průsečíku úhlu a kružnice kolmici k ose x sin 90° sin 60° sin 45° 1 sin 30° 1

SINUS Úkol Odvoď hodnoty funkce sinus pro úhly 30°, 45° a 60°. (Návod: použij rovnostranný a rovnoramenný pravoúhlý .) rovnostranný  BCS: BCS: Pythagorova věta a2 = v2 + (a/2)2 v2 = a2 - (a/2)2 v2 = a2 - a2/4 v2 = 3/4 a2 S 60° v A B C a/2 30° a

SINUS ABC:  BCS: rovnoramenný pravoúhlý  C c2 = a2 + a2 c2 = 2a2 a v Pythagorova věta c2 = a2 + a2 c2 = 2a2  BCS: 45° v A B C c/2 S a c

Tabulka důležitých hodnot funkce sinus 0° 30° 45° 60° 90° sin a 1

PŘÍKLADY 1. Vypočítejte velikosti úhlů v pravoúhlém , jehož strany mají délky 3, 4 a 5 cm.

ŘEŠENÍ PŘÍKLADU 1 89°60´= 90° A B C a b 4 5 3 Zkouška: a + b = 90° 36°52´ 53° 8´ 89°60´= 90°

PŘÍKLADY 2. Vypočítejte velikosti vnitřních úhlů a délky stran rovnoramenného  ABC, jestliže známe: délku ramene 12 cm a velikost vrcholového úhlu 32°.

ŘEŠENÍ PŘÍKLADU 2 C a v (180°- 32°) : 2 = 74° A S B 16° 32° a = 12 cm

PŘÍKLADY 3. Lanová dráha na Petřín v Praze má délku 400 m. Hořejší stanice leží o 106 metrů výše než dolejší. Určete úhel stoupání.

ŘEŠENÍ PŘÍKLADU 3 H M Úhel stoupání lanové dráhy je asi 15°22´. 400 m