Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A11 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.

Slides:



Advertisements
Podobné prezentace
* Lineární funkce Matematika – 9. ročník *
Advertisements

ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Mgr. Vladimír Wasyliw - s využitím práce Mgr. Petra Šímy – SŠS Jihlava
Pojem funkce Lineární funkce Kvadratické funkce
Základy infinitezimálního počtu
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B01 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A13 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A2 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
Exponenciální funkce Körtvelyová Adéla G8..
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_89.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B09 AutorRNDr. Marcela Kepáková Období vytvořeníProsinec.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A17 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B20 AutorRNDr. Marcela Kepáková Období vytvořeníKvěten.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A15 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A1 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
VLASTNOSTI FUNKCÍ Příklady.
Návod Pro ovládání prezentace používejte pouze označena tlačítka. Jinak opakování ztrácí evaluační smysl. Otázky jsou označeny otazníkem. Při odpovědi.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A6 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
LINEÁRNÍ FUNKCE.
Procvičování vlastnosti kvadratické funkce. Určete vlastnosti funkcí z minulého procvičování.
Funkce lineární kvadratická nepřímá úměrnost exponenciální
Obchodní akademie, Ostrava-Poruba, příspěvková organizace
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
vlastnosti lineární funkce
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Logaritmické funkce Michal Vlček T4.C.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B07 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A16 AutorRNDr. Marcela Kepáková Období vytvořeníKvěten.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B15 AutorRNDr. Marcela Kepáková Období vytvořeníDuben.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A3 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B05 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
MIROSLAV KUČERA Úvodní informace Matematika B 2
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
RISKUJ Lineární rovnice Určete rovnici přímé úměrnosti, jestliže její graf prochází bodem D[1/2; 3] Ř ešení: y = ax 3 = ½.a /.2 6 = a a.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B11 AutorRNDr. Marcela Kepáková Období vytvořeníDuben.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A16 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A12 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A10 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A8 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A7 AutorRNDr. Marcela Kepáková Období vytvořeníZáří 2012.
Repetitorium z matematiky Podzim 2012 Ivana Medková
S omezeným definičním oborem
9. Vlastnosti funkcí – rostoucí a klesající funkce - příklady
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B02 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen.
Lineární funkce VY_32_INOVACE_056_Lineární funkce
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B04 AutorRNDr. Marcela Kepáková Období vytvořeníListopad.
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
Lineární funkce Rozdělení lineárních funkcí Popis jednotlivých funkcí.
Elektronické učební materiály - II. stupeň Matematika Autor: Mgr. Radek Martinák FUNKCE – lineární Co znamená lineární? Jak souvisí lineární funkce s přímou.
Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu:CZ.1.07/1.4.00/ Šablona:III/2 Inovace a zkvalitnění výuky.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen: Mgr. Danuše Chrastecká Matematika 2. ročník Lineární lomená funkce ChrM611 říjen 2013 Číslo klíčové.
Matematický milionář Foto: autor Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Autor: Předmět: Ročník: Název: Označení: DUM vytvořen:
8. Vlastnosti funkcí – monotónnost funkce
Obchodní akademie, Ostrava-Poruba, příspěvková organizace
Obchodní akademie, Ostrava-Poruba, příspěvková organizace
Obchodní akademie, Ostrava-Poruba, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Výuka matematiky v 21. století na středních školách technického směru
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Kvadratická funkce Matematika – 9.ročník VY_32_INOVACE_
Transkript prezentace:

Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08A11 AutorRNDr. Marcela Kepáková Období vytvořeníŘíjen 2012 Ročník/věková kategorie2. ročník Vyučovací předmět/klíčová slova Matematika Speciální případy lineární funkce Anotace Prezentace je určena pro 2. ročník. Zabývá se speciálními případy lineární funkce, jejich vlastnostmi a grafy.

LINEÁRNÍ FUNKCE Speciální případy lineární funkce

Konstantní funkce Lineární funkce je každá funkce na množině R, která je dána ve tvaru y = ax + b, a,b  R Je-li a = 0, tj. funkce y = b se nazývá konstantní funkce

Přímá úměrnost Lineární funkce je každá funkce na množině R, která je dána ve tvaru y = ax + b, a,b  R Je-li b = 0, tj. funkce y = ax se nazývá přímá úměrnost

Příklad Sestrojte graf funkce y = 1; y = 3; y = -2

Vlastnosti konstantní funkce Grafem konstantní funkce je přímka D(f) = R H(f) ={b} Konstantní funkce není rostoucí, není klesající Není prostá Je omezená Je sudá Nemá maximum, nemá minimum P Y =[0,b] P x = není

Příklad Sestrojte graf funkce y = x; y = 2x; y = 3x

Vlastnosti přímé úměrnosti Grafem funkce je přímka D(f) = R H(f) = R Je rostoucí pro a > 0, je klesající pro a < 0 Je prostá Není omezená Je lichá Nemá maximum, nemá minimum P Y = [0,0] P x = [0,0] Prochází počátkem souřadné soustavy

Příklad Napište funkční předpis

Příklad Napište funkční předpis

Příklad Je dána funkce y = -3. Průsečíky se souřadnými osami jsou: a) A =[0;-3], B =[-3;0] b) B =[-3;0] c) A =[0;-3] d) nemá průsečíky s osami

Příklad

Přímá úměrnost je funkce a) sudá b) lichá c) omezená d) vždy rostoucí

Zdroje Function Graph. (accessed Jan 01, 2013). Příklady z vlastní databáze