Zdroje světla.

Slides:



Advertisements
Podobné prezentace
Žárovka vs. Úsporná zářivka
Advertisements

Základní škola Zlín, Nová cesta 268, příspěvková organizace
Zdroje záření Nejdůležitějším zdrojem záření je Slunce.
Macháčková Ludmila Donátová Klára
Fyzika Zdroje světla.
OPTIKA ZDROJE ELEKTROMAGNETICKÉHOZÁŘENÍ
Vedení elektrického proudu v plynech
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Žárovky.
ELEKTRICKÝ PROUD V PLYNECH
Zahřívání vodiče při průchodu
44 zdroje světla Jan Klíma.
Fotoelektrický jev Jeden z mechanizmů přeměny primárního záření (elektromagnetické) na sekundární (elektronové = beta) Dopadající foton způsobí ionizaci.
Optické metody.
OPTICKÁ EMISNÍ SPEKTROSKOPIE
Elektromagnetické spektrum
Infračervené záření.
Elektromagnetické záření látek
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ EU peníze školám MODERNÍ ŠKOLA – ZKVALITNĚNÍ VÝUKY Registrační číslo GP: CZ.1.07/1.4.00/ Č.j.: 14863/ Tento.
Prezentace 2L Lukáš Matoušek Marek Chromec
Ngo Anh Tuan, 4.C.  Za obvyklých podmínek jsou plyny nevodivé  Obsahují jen malý počet elektricky nabitých částic – iontů.  Množství iontů lze určitými.
Digitální učební materiál
Rozklad světla Vypracoval: Tomáš Cacek a Aleš Křepelka.
Tomáš Novotný, 2.L SPŠE Olomouc
Přímočaré šíření světla, rychlost světla
Světlo.
Autor: Mgr. Libor Sovadina
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ EU peníze školám MODERNÍ ŠKOLA – ZKVALITNĚNÍ VÝUKY Registrační číslo GP: CZ.1.07/1.4.00/ Č.j.: 14863/ Tento.
FY_088_ Světelné jevy_Světelné zdroje
Spektra látek Při průchodu světla optickým hranolem vzniká v důsledku disperze světla tzv. hranolové spektrum.   Podobné spektrum vzniká také při průchodu.
Vodivost látek.
38. Optika – úvod a geometrická optika I
Elektrotechnologie 1.
Fotoelektrický jev Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického.
Žárovka Tepelný zdroj Zdrojem světla je wolframový drát, který má veliký odpor a vysokou teplotu tání (3200 °C) Při přivedení el. proudu se drát zahřeje.
Ionizační energie.
Princip laseru Zdrojem energie (např. výbojka) je do aktivního média dodávána energie. Ta energeticky vybudí elektrony aktivního prostředí ze zákl. energetické.
Světlo.
Didaktický učební materiál pro ZŠ INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Autor:Bc. Michaela Minaříková Vytvořeno:únor 2012 Určeno:7. ročník ZŠ.
ZDROJE SVĚTLA.
LUMINISCENCE světélkující svítilka třpytivá (Noctiluca scintillans)
SVĚTELNÁ ENERGIE. Vznik světelné energie Jaderná energie ve Slunci se mění na světelnou energii, tu zachytí solární panely, ze kterých vychází elektrická.
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Halogenová svítidla Obor:Elektrikář.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_32_20 Název materiáluSpektra.
Fyzika v digitální fotografii Část 1: Zdroje světla Stanislav Hledík
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Zářivková svítidla 1.
ZÁŘIVKOVÁ SVÍTIDLA Autor: Pavel Porteš Jsou to nízkotlakové trubice plněné rtuťovými parami, v nichž se ultrafialové záření výboje mění vrstvou luminoforu.
Světlo Předmět: BiologieTřída: 2L Obor: Technické lyceumŠkolní rok: 2015/16 Vyučující: Mgr. L. KašparJméno: Vojtěch Bezděk.
Výboje v plynech Jana Klapková © 2011 VEDENÍ ELEKTRICKÉHO PROUDU V PLYNECH.
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Výbojková svítidla.
CZ.1.07/1.5.00/ Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy.
Název školy: Základní škola a Mateřská škola Kladno, Norská 2633 Autor: Bc. František Vlasák, DiS. Název materiálu: VY_52_INOVACE_F.7.Vl.16_Světelné_jevy.
Elektromagnetické záření. Elektromagnetická vlna E – elektrické pole B – magnetické pole Rychlost světla c= m/s Neviditelné vlny, které se.
Částicový charakter světla
Přímočaré šíření světla, rychlost světla
Spektroskopie.
Základy astronomie, Slunce
Světlo jako elektromagnetické vlnění
ZŠ Masarykova, Masarykova 291, Valašské Meziříčí Martin Havlena
Ivča Lukšová Petra Pichová © 2009
AUTOR: Mgr. HANA DVOŘÁČKOVÁ NÁZEV: VY_32_INOVACE_45_ZDROJE SVĚTLA
Výuka jaderné chemie a chemie f-prvků na středních školách
Vlastnosti pevného, kapalného a plynného skupenství
Chemiluminiscence, fluorescence
Kvantová fyzika.
Teplotní zdroje světla
Elektromagnetické záření.
Základní škola Zlín, Nová cesta 268, příspěvková organizace
Vedení el. proudu v plynech (za normálního tlaku)
Teplotní zdroje světla
Transkript prezentace:

Zdroje světla

Vlastní a nevlastní zdroje Světelné zdroje lze rozdělit na vlastní - Za vlastní zdroje se označují taková tělesa nebo látky, v jejichž struktuře dochází ke vzniku světla. Za vlastní zdroj světla se považuje např. Slunce, žárovku, plamen atd. nevlastní - Látky, které samy světlo nevytvářejí, ale pouze odráží a rozptylují dopadající světlo, se označují jako nevlastní zdroje. Mezi nevlastní zdroje lze zařadit např. Měsíc, mraky, všechny osvětlené předměty apod. Tyto zdroje lze dále rozlišovat jako: reflektory - odražeče, neprůhledné, pro dané záření refraktory - "ohýbače" / "lamače", čiré, stínítka / matnice, poloprůhledné difuzéry.

Přírodní zdroje K přírodním zdrojům patří například: Kosmická tělesa Primární zdroje - Slunce, hvězdy. Sekundární zdroje - Měsíc: Pouze odráží světlo z jiných zdrojů, samy nesvítí. Chemické reakce – oheň Biologické zdroje Primární zdroje - luminiscence: světlušky, různí mořští živočichové, houby Sekundární zdroje - odrazy očí viditelné ve tmě nebo při záblesku: efekt červených očí Elektrické výboje - elektrický proud v plynech (oblouk, výboj, blesk) Tektonické jevy - žhnoucí láva

Umělé zdroje Teplotní zdroje světla Největší a nejstarší skupinu tvoří zdroje teplotní, tzv. inkandescentní. Inkandescence je jev vyzařování světla, způsobeného tepelným buzením. V těchto zdrojích vzniká světlo jako jedna ze složek elektromagnetického záření vyvolaného vysokou teplotou povrchu nějakého tělesa. Patří sem oheň (svíčka, lampa), v němž září: rozžhavené částice (nejčastěji uhlíku), slabě i žhavé plyny.

Umělé zdroje Teplotní zdroje světla Elektroinkandescence Vzniká průchodem elektrického proudu pevnou vodivou látkou s vysokou teplotou tání např. platina, wolfram, atd. Pevná látka se rozžhaví na požadovanou teplotu, při které dochází k emisi viditelného záření. Na tomto principu pracují klasické žárovky s wolframovým vláknem: V žárovkách svítí rozžhavené wolframové (u prvních žárovek uhlíkové) vlákno. V plynové lampě svítí žhavá tepelně odolná punčoška z jemné tkaniny ohřívaná málo svítivým plynovým plamenem. Společnou vlastností teplotních zdrojů je: velmi nízká účinnost přeměny jiného druhu energie na světlo, velký podíl energie vyzářené v podobě tepla (hlavní část), spojité rozložení světla ve spektru podle fyzikální křivky teplotního zářiče, subjektivně příjemné vnímání světla lidským okem, závislost barvy světla na teplotě zářiče,

Umělé zdroje Chemické zdroje světla Jsou založeny na luminiscenci. Obvykle se s nimi lze setkat ve formě trubic, sloužících pro nouzové osvětlení. Luminiscence je spontánní (samovolné) záření (obvykle) pevných nebo kapalných látek Luminiscence je děj, při němž záření o kratší vlnové délce (větší frekvenci) vyvolává v látce určitého složení vznik záření o delší vlnové délce (nižší frekvenci). Látky, u nichž nastává luminiscence, se označují jako luminofory. Jsou to převážně pevné látky s příměsmi vytvářejícími tzv. luminiscenční centra .

Umělé zdroje Elektrické zdroje světla s nespojitým spektrem Na rozdíl od teplotních zdrojů zde vzniká světlo jinými mechanismy. Obvykle jde o proud fotonů jednotlivě vyzářených při návratu elektronů z nestabilních poloh ve vyšších hladinách do stabilní polohy v nižší hladině v elektronovém obalu nějakého atomu. Protože energie uvolňovaná vracejícími se elektrony je kvantovaná velikostí „skoku“ mezi hladinami, mají i energie fotonů nespojitý průběh, rozdělený do tzv. emisních spektrálních čar nebo pásů. Vybuzeného stavu atomů s elektrony dočasně na vyšších hladinách než jsou obvykle se dosahuje procesem zvaným excitace. K excitaci dochází různými způsoby, například vysokou teplotou, silným elektrickým polem, nárazem částic nebo atomů s vysokou energií apod. Ke zdrojům světla s nespojitým spektrem patří i lasery.

Umělé zdroje Elektrické zdroje světla s nespojitým spektrem Barva světla popsaných zdrojů obvykle nebývá bílá. Podle polohy svítivých částí spektra má zdroj výraznou převažující barvu. Např. neonka podle plynové náplně neonu (Ne) nebo podle barvy výboje doutnavka, svítí červeně. Rtuťové výbojky a zářivky svítí převážně v neviditelné ultrafialové části spektra a pro získání viditelného světla je třeba použít optickou transformaci pomocí vrstvy luminoforu na vnitřní straně baňky či trubice. Nízkotlaké sodíkové výbojky svítí převážně na žlutooranžových sodíkových (Na) čarách spektra.