ŘÍZENÍ RIZIK I Finanční deriváty Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy. Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale.

Slides:



Advertisements
Podobné prezentace
DLOUHODOBÉ KONTRAKTY PRO VELKÉ ZÁKAZNÍKY Společný seminář SVSE a Skupiny ČEZ 15. května 2008 Praha ČEZ Prodej, s.r.o. generální ředitel ČEZ Prodej, s.r.o.
Advertisements

INVESTIČNÍ MATEMATIKA
Možnosti využití opcí a opčních strategií při obchodování
Poptávka po penězích.
ŘÍZENÍ FINANČNÍCH RIZIK
FINANČNÍ A INVESTIČNÍ MATEMATIKA
Bankovníctvo a finančníctvo
IAS 17 - Leasing ..
6. Trh termínových kontraktů
Kategorie tržního rizika
Dluhové cenné papíry. Dluhopis.
Dluhové cenné papíry Dluhopis
Ekonomika investic.
Finanční deriváty I. Ing. Martin Širůček, Ph.D.
Finanční deriváty Zdeněk Jelínek. Finanční deriváty Finanční derivát je finanční nástroj založený na určitém finančním nástroji (podkladovém aktivu).
Finanční deriváty II. Ing. Martin Širůček, Ph.D.
Aplikace při řízení tržních rizik
FINANČNÍ A INVESTIČNÍ MATEMATIKA
Řízení rizik II Jan Vlachý Vlachý, J.: Řízení finančních rizik; Eupress, Praha, 2006.
Řízení finančních rizik
Ekonomické modelování Reálné opce Reálnou opci lze interpretovat jako flexibilitu investičního projektu. –Opce zahájení/rozšíření projektu –Opce ukončení/útlumu.
Ekonomické modelování Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. –Akciové riziko –Měnové riziko –Komoditní riziko –Úrokové riziko –Odvozená.
Mezinárodní obchod a pohyb kapitálu
Metody řízení tržních rizik
Průměrné vážené náklady kapitálu
prof. Ing. Jiří Polách, CSc.
Řízení a hodnocení banky
Tržní riziko Tržní riziko je pravděpodobnost změny hodnoty podniku, způsobené změnou tržní hodnoty rizikového faktoru. Rizikový faktor  výnos, tzn. změna.
Podnikatelské riziko Podnikatelské riziko je pravděpodobnost změny hodnoty podniku vlivem neočekávaných událostí. Provozní (operační) riziko Riziko vlastního.
Řízení finančních rizik Jan Vlachý Vlachý, J.: Řízení finančních rizik; Eupress, Praha, 2006.
8. přednáška Value Based Management (řízení hodnoty) – propojení cílů akcionářů s cíli managementu pro maximalizaci tvorby hodnoty pro vlastníky (shareholder.
Ocenění Cenných papírů
VÝNOSY A HODNOTA FINANČNÍCH AKTIV
ŘÍZENÍ RIZIK I Finanční deriváty Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy na ně. Smlouvy, jimiž se neobchoduje s podkladovými aktivy,
ŘÍZENÍ RIZIK I Finanční rizika Tržní riziko je pravděpodobnost změny hodnoty podniku, způsobené změnou tržní hodnoty rizikového faktoru. Kreditní riziko.
VNĚJŠÍ HOSPODÁŘSKÁ POLITIKA – 2. část Kursová politika Tomáš Paleta Katedra ekonomie, č. 604 Konzultační hodiny: Pondělí 14.00–15.00
N_OFI_2 2. Přednáška Opce Ing. Miroslav Šulai, MBA 1.
Komerční bankovnictví 1 / VŠFS ZS 2008/09 1 Zkouškové termíny  ST :00, E 127  PO :00, E 127  ČT :00, E 127  ST :00, E.
Finanční trhy 2. část, přednáška KS
Finanční management Teorie portfolia dokončení, opce, hranice pro cenu opce, opční techniky FEL ČVUT, katedra ekonomiky, manažerství a humanitních věd.
příklady použití základních reálných opcí
FEL ČVUT, katedra ekonomiky, manažerství a humanitních věd © Oldřich Starý, 2012 Finanční management Cena opce, parita kupní a prodejní opce, Black- Scholesův.
FEL ČVUT, katedra ekonomiky, manažerství a humanitních věd © Oldřich Starý, 2013 Finanční management Americká opce Futures SWAP Opce načasování.
11 Osobní finance a investování. 2 Osobní finanční plánování Smyslem osobního finančního plánování je ujasnit si: budoucí osobní a rodinné.
Ekonomické modelování Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. –Akciové riziko –Měnové riziko –Komoditní riziko –Úrokové riziko –Odvozená.
nevýdělečné organizace (ČÚS a vyhláška 504/2002 Sb.)
ŘÍZENÍ RIZIK I Finanční rizika Tržní riziko je pravděpodobnost změny hodnoty podniku, způsobené změnou tržní hodnoty rizikového faktoru. Kreditní riziko.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_62_INOVACE_21_06 Název materiáluDluhopis.
IAS 17 Leasingy. Cíl standardu Stanovit účetní pravidla pro zobrazení leasingů v účetních závěrkách nájemců a pronajímatelů.
Časová hodnota peněz Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí.
Riziko protistrany a změny v modelu fungování trhu s finančními deriváty Jiří Witzany Rozvoj a inovace finančních produktů, VŠE,
Finanční deriváty Jana Hnátková Jana Hnátková. Obsah Historie Historie Charakteristika Charakteristika Dělení Dělení Využití Využití Jednotlivé typy +
Call opce a put opce Datum: 16. únor 2016 Lektor: Gabriel Jurčák Kontakt:
Co jsou opce? Datum: 9. únor 2016 Lektor: Gabriel Jurčák Kontakt:
Téma 13: Oceňování podniku 1. Důvody zjišťování tržní hodnoty podniku 2. Postup při oceňování 3. Metody oceňování podniku: a) Výnosové metody b) Metody.
Téma 2: Časová hodnota peněz a riziko ve finančním rozhodování 1. Časová hodnota peněz ve finančním rozhodování podniku 2. Riziko ve finančním rozhodování.
Kapitálové trhy Téma 5: Akcie a deriváty 1Typologie akcií 2Výnos a cena akcie 3Finanční deriváty.
Téma 7. Investiční rozhodování 1. Kapitálové rozpočty výdajů a očekávaných peněžních příjmů z investic 2. Hodnocení efektivnosti investičních projektů.
Finanční trhy Globální ekonomika Dluhopisy Forex Akcie Komodity Deriváty.
ŘÍZENÍ FINANČNÍCH RIZIK Kategorie tržního rizika Základní tržní rizika –Měnové riziko –Úrokové riziko –Akciové riziko –Komoditní riziko Odvozená tržní.
OCEŇOVÁNÍ CENNÝCH PAPÍRŮ Přednáška č. 6
Kam s penězi, aby nezahálely
Kapitálový trh – charakteristika CP
Finanční a kapitálový trh VOKT (P-1)
VNĚJŠÍ HOSPODÁŘSKÁ POLITIKA – 2. část Kursová politika
Úvod do finančních derivátů
Finanční trhy a cenné papíry
Garance Ing. Arnošt Klesla, Ph.D. Katedra financí (FES)
Prezentace pro přednášející
nevýdělečné organizace (ČÚS a vyhláška 504/2002 Sb.)
Transkript prezentace:

ŘÍZENÍ RIZIK I Finanční deriváty Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy. Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy (=>„obchody s rizikem“). Hodnota vzniká zprostředkovaně přes hodnotu podkladového aktiva nebo ukazatele. Existence derivátů zvyšuje efektivitu trhů (větší likvidita, nižší transakční náklady); jsou výhodné k zajišťování rizik i ke spekulaci. Obchodují se prostřednictvím burz a brokerů (=>standardizace, vysoká likvidita) nebo tvoří na míru klientům (tzv. „OTC deriváty“=>mohou mít jakékoliv požadované charakteristiky).

ŘÍZENÍ RIZIK I Základní typy finančních derivátů Termínové obchody (a futures): Vypořádání nákupu či prodeje v budoucnosti za pevných podmínek. Swapy: Výměna určitého aktiva za jiné na pevně stanovenou dobu; zvláštním typem jsou tzv. repo operace - dohody o prodeji a zpětném nákupu (swap lze interpretovat jako kombinaci promptních a termínových obchodů). Opce: Právo jedné ze smluvních stran na budoucí uskutečnění obchodu za pevných podmínek.

ŘÍZENÍ RIZIK I Termínové obchody Smlouva, na jejímž základě se obchod vypořádá v budoucnosti za pevně stanovených podmínek. Smlouva je dána typem a množstvím podklad. aktiva, termínem dodání a cenou při dodání. Futures jsou termínové obchody se standardními podmínkami, obchodované na finančních trzích. Protistranou je zde burza (to zvyšuje likviditu, snižuje riziko vypořádání) a zpravidla nedochází k fyzickému dodání aktiva (před vypořádáním se smlouva prodá nebo se její hodnota vyplatí v penězích).

ŘÍZENÍ RIZIK I Ocenění termínových obchodů U termínových obchodů je snadná replikace; termínová cena závisí na okamžité ceně a nákladu financování (= oček. úrokové a jiné náklady - oček. příjmy z aktiva). Aktivum bez vlastních příjmů (např. krátkodobě držené akcie, drahé kovy) F = p (1 + r t t)... nebo... F = p e rt Aktivum s průběžným zhodnocováním y (např. cizí měny, diskontované úvěry, indexy, komodity) F = p (1 + (r t - y) t)... nebo... F = p e (r-y)t Aktivum s jednorázovými příjmy Y v čase T (akcie) F = p (1 + r t t) – Y (1 + r T-t (t-T))... nebo... F = p e rt – Y e r(t-T)

ŘÍZENÍ RIZIK I Cenová citlivost termínových obchodů Termínový obchod má v okamžiku uzavření nulovou hodnotu. Citlivosti z pohledu kupujícího (tzn. dlouhé pozice v podkl. a.): rizikový faktor změna riz. faktoru změna hodnoty kontraktu cena podklad. aktiva růstrůst úroková sazba růstrůst výnos podkl. aktiva růstpokles p V r-y V

ŘÍZENÍ RIZIK I Příklad - Ocenění pozice ve futures Obchodník koupil před třemi měsíci futures na prodej akc. indexu S&P 500 za 6 měsíců při ceně F = $. Dnešní hodnota indexu p S&P = $, bezriziková úroková sazba r $ = 5%, očekávaný roční výnos akc. trhu r S&P = 8%. Jaká je nyní hodnota těchto futures? Současná hodnota term.ceny F je rovna F/e 0,25×(5%-8%) = $. (futures vyprší za 3 měsíce, tzn. 0,25 roku) Index ale dnes může prodat za $. Proto by při prodeji realizoval ztrátu V = = -181 $. Dlouhá pozice má tedy hodnotu V = p - Fe -t(r-y) = 181 $. Pozn.: Podobný efekt by přinesla koupě akcií, ale s vynaložením značného kapitálu (zde cca $).

ŘÍZENÍ RIZIK I Opce Smlouva, kde má jedna ze stran právo trvat na budoucím vypořádání obchodu za pevně stanovených podmínek. Uplatňovací cena (S) Doba do uplatnění (t) Kupní opce (call) vs. prodejní (put) opce Vydavatel opce (short) vs. držitel opce (long) Evropská opce vs. americká opce; exotické opce Finanční opce; vestavěné opce; reálné opce

ŘÍZENÍ RIZIK I Hodnota opce Opce (právo) má pro držitele nezápornou hodnotu. p V Celková hodnota (kupní) opce Časová hodnota Vnitřní hodnota (kupní) opce p V S rizikový faktor  riz. faktoru kupní opce prodejní opce cena podklad. aktiva růstrůstpokles úroková sazba růstrůstpokles volatilita podkl. aktiva růstrůstrůst doba do uplatnění poklespoklespokles v penězích (in-the-money) bez peněz (out-of-the-money) na penězích (at-the-money)

ŘÍZENÍ RIZIK I Motýlek (butterfly) p V koupě VRR koupě kupní opce při S 1 prodej prodejní opce při S 2 prodej VRR prodej kupní opce při S 2 koupě prodejní opce při S 3 Opční strategie Opční strategie replikují peněžní toky při vypršení opce. Steláž (straddle) p V koupě kupní opce koupě prodejní opce Škrtič (strangle) p V koupě kupní opce koupě prodejní opce Vertikální růstové rozpětí (vertical bull spread) p V koupě kupní opce prodej prodejní opce

ŘÍZENÍ RIZIK I Parita kupní a prodejní opce Kupní opci lze replikovat pomocí prodejní opce a termínového obchodu: p V koupě term. kontraktu na podkladové aktivum koupě prodejní opce Výsledkem je kupní opce. Z této replikace vyplývá, že V C = V P + V F, tzn. V C = V P + p - S e -tr Pozn.: Stačí tedy ocenit (evropskou) kupní opci a cenu prodejní opce z ní lze odvodit.

ŘÍZENÍ RIZIK I Oceňování opcí Na základě binomického modelu rozhodovacího procesu v čase a jeho numerickým řešením: –Rekurzí => Coxův-Rossův-Rubinsteinův model –Simulací => Monte Carlo Analytickým řešením výsledku dynamického zajišťování => Blackův-Scholesův model a jeho varianty (Mertonův model, Blackův model, Garmanův-Kohlhagenův model). Binomický model je výpočetně náročnější, ale obecnější (na rozdíl od B-S umožňuje ocenit americké či exotické opce); konverguje k B-S.

ŘÍZENÍ RIZIK I Princip binomického modelu Kupní opce: S = 40 na aktivum s p = 32 Kč, které v čase t nabude hodnot d = 16 Kč nebo u = 64 Kč; r t = 2%. 1. Opce bez peněz nebude uplatněna, a tedy V d = 0 2. Opce v penězích, uplatněna, hodnota V u = = 24 Strukturu příjmů replikujeme N term. obch. na podkl. akt. Aby měly t.o. při ceně podkl. aktiva 16 Kč nulovou hodnotu, musely být vystaveny s term. cenou F = 16. Dnes tedy mají hodnotu V F = p - F/(1+r t ) = 16,31 Kč. Hodnota N term. obch. je při vypořádání obecně rovna V NF = N(F A - F). Protože chceme, aby při F A = u = 64  V NF = 24, musí být N = 24/(64-16) = 0,5. Opce tedy musí mít hodnotu V C = 0,5×16,31 = 8,16 Kč.

ŘÍZENÍ RIZIK I Příklad - binomický model Kupní opce S = 1 100; p = 1 000; r = 5%; 4 periodický model. F = 1 100; N = 1 V F = 1157, e -0,25×5% = 71,29 V C = N V F = 71,29 F = N = (u - S)/(u - d) = 2,50/102,5 = 0,0244 V F = e -0,25×5% = 62,42 V C = N V F = 1,52 N = 0 => V C = 0

ŘÍZENÍ RIZIK I Blackův-Scholesův model Předpokl.: Evropská opce, aktivum bez vl. příjmů, normální rozdělení logaritmických výnosů. V C = p N(d 1 ) - S e -rt N(d 2 ) d 1 = [ln(p/S) + (  2 /2) t] / (   t) d 2 = d 1 -   t Příkl.: p = 500 Kč; S = 510 Kč; r = 3%; t = 3 měs. (=0,25);  = 20% d 1 = [ln(500/510)+(0,04/2)×0,25]/(0,2×0,5) = -0,0730 d 2 = -0, ,2×0,5 = -0,1730 N(d 1 ) = N(-0,0730) = 0,4709; N(d 2 ) = N(-0,1730) = 0,4313 (distribuční funkce normovaného normálního rozdělení) V C = 500×0, ×e -20%×0,25 ×0,4313 = 17,12 Kč V P = V C - p + Se -rt = 17, ×e -3%×0,25 = 23,31 Kč

ŘÍZENÍ RIZIK I Varianty Blackova-Scholesova modelu Mertonova formulace pro aktiva s vlastními příjmy V C = p e -yt N(d 1 ) - S e -rt N(d 2 ) d 1 = [ln(p/S) + (r - y +  2 /2) t] / (   t) d 2 = d 1 -   t Př.: p $ = 25 Kč; S = 24 Kč; r = 3%; y = r $ = 5%; t = 0,5;  $ = 12% (aplikaci na cizí měny se říká Garmanův-Kohlhagenův model) d 1 = 0,4057; d 2 = 0,3208 N(d 1 ) = 0,6575; N(d 2 ) = 0,6258 V C = 25×e -5%×0,5 ×0, ×e -3%×0,5 ×0,3208 = 1,24 Kč V P = V C - p + Se -(r-y)t = 0,50 Kč... pozor, mění se hodnota term. o. Pozn.: Existují i analytické modely pro opce na termín. obchody (Blackův model) a pro jiná statist. rozdělení výnosů.