Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Konstrukce lichoběžníku
Advertisements

Shodnost rovinných útvarů Shodnost trojúhelníků
Sestrojení úhlu o velikosti 60° pomocí kružítka.
POZNÁMKY ve formátu PDF
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce lichoběžníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
SZŠ a VOŠZ Zlín® Kabinet MAT předkládá prezentaci
Podobnost rovinných útvarů
Podobnost.
Goniometrické funkce Autor © Mgr. Radomír Macháň
Trojúhelník Vnitřní a vnější úhly v trojúhelníku Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR.
Podobnost trojúhelníků
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Shodnost geometrických útvarů
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Pythagorova věta Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Užití Thaletovy kružnice
Exponenciální rovnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
Podobnost trojúhelníků
Tento Digitální učební materiál vznikl díky finanční podpoře EU- Operačního programu Vzdělávání pro konkurenceschopnost Není –li uvedeno jinak, je tento.
Podobnost trojúhelníků I.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ivana Kuntová, Pětiúhelník Přesná konstrukce velikosti strany pětiúhelníku ze zadaného poloměru opsané kružnice Ivana Kuntová,
Vzájemná poloha dvou kružnic
Mnohočleny Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: ,
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Trojúhelník.
Sestrojení úhlu o velikosti 90° pomocí kružítka.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
PROVĚRKY Převody jednotek času.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku podle věty sss vytvořená v Zoneru Callisto Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné.
Goniometrické funkce Sinus Nutný doprovodný komentář učitele.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
PODOBNOST trojúhelníků Mgr. Petra Toboříková VOŠZ A SZŠ Hradec Králové 2013.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
Věty o podobnosti trojúhelníků
Konstrukce trojúhelníku
Vnitřní a vnější úhly v trojúhelníku
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Konstrukce trojúhelníku
Věty o podobnosti trojúhelníků
Goniometrické funkce Autor © Mgr. Radomír Macháň
Goniometrické funkce Autor © Mgr. Radomír Macháň
Konstrukce pravoúhlého trojúhelníku pomocí Thaletovy kružnice,
Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku podle věty sus
Konstrukce trojúhelníku
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Věty o podobnosti trojúhelníků
Konstrukce trojúhelníku
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
ZLOMKY pracovní listy Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Dušan Goš. Dostupné z Metodického portálu ISSN: ,
Procenta % Prezentace je zaměřená na procvičování procent užitím trojčlenky. Obsahuje celkem řešených 15 příkladů. Mgr. Eva Černá, Plzeň Autor © Eva Černá.
Věty o podobnosti trojúhelníků
Shodnost rovinných útvarů Shodnost trojúhelníků
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost Věty o podobnosti trojúhelníků

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Autor © Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Autor © Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Autor © Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Dva trojúhelníky ABC a XYZ jsou podobné, jestliže pro délky jejich stran platí:  XY  = k.  AB ,  YZ  = k.  BC ,  ZX  = k.  CA , k > 0 k … koeficient (poměr) podobnosti

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Dva trojúhelníky ABC a XYZ jsou podobné, jestliže pro délky jejich stran platí:  XY  = k.  AB ,  YZ  = k.  BC ,  ZX  = k.  CA , k > 0 k … koeficient (poměr) podobnosti Je-li k > 1, nazývá se podobnost zvětšení.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Dva trojúhelníky ABC a XYZ jsou podobné, jestliže pro délky jejich stran platí:  AB  = k.  XY ,  BC  = k.  YZ ,  CA  = k.  ZX , k > 0 k … koeficient (poměr) podobnosti Porovnáme-li strany obráceně, platí:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Dva trojúhelníky ABC a XYZ jsou podobné, jestliže pro délky jejich stran platí:  AB  = k.  XY ,  BC  = k.  YZ ,  CA  = k.  ZX , k > 0 k … koeficient (poměr) podobnosti Je-li k < 1, nazývá se podobnost zmenšení. Porovnáme-li strany obráceně, platí:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Věta o podobnosti trojúhelníků: sss Každé dva trojúhelníky, které mají sobě rovné poměry délek všech tří dvojic odpovídajících si stran, jsou podobné.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Porovnejme nyní vnitřní úhly. Autor © Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Porovnejme nyní vnitřní úhly. Autor © Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Porovnejme nyní vnitřní úhly. Autor © Radomír Macháň

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Porovnejme nyní vnitřní úhly. Dva podobné trojúhelníky ABC a XYZ mají odpovídající si vnitřní úhly shodné (vnitřní úhly mají stejnou velikost).  CAB  =  ZXY ,  ABC  =  XYZ ,  BCA  =  YZX 

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Věta o podobnosti trojúhelníků: uu Každé dva trojúhelníky, které se shodují ve dvou úhlech, jsou podobné. Víš, proč jen „dva úhly“? Jelikož součet všech tří úhlů je 180°, i třetí dvojice úhlů se musí rovnat.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků A na závěr ještě věta o podobnosti trojúhelníků třetí: sus Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících si stran a shodují se v úhlu jimi sevřeném, jsou podobné. Na základě předcházejících zjištění již určitě není třeba vysvětlovat víc.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Podobnost trojúhelníků Zápis podobnosti:  ABC   XYZ