Tabulka nuklidů stabilní jádra se vyskytují pouze v oblasti tzv. linie stability Stabilní - modré.
Vazbová energie (binding energy) vazbová energie – energie, která se uvolní při rozebrání jádra na jednotlivé nukleony hmotnost jader často se pracuje s vazbovou energií na jeden nukleon (B/A) jakýkoli proces, při němž je vazbová energie na 1 nukleon na konci větší než na počátku vede ke konverzi hmoty na energii – fúze, štěpení Separační energie: Sp = B(A,Z) – B(A-1,Z-1) Sn = B(A,Z) – B(A-1,Z) \D mass defect. V definici B by mela asi byt hmotnost vodiku misto hmotnosti protonu. Uvolňování energie při slučování jader s malým A na jádro s větším A (s větší vazbovou energií) je základem fúze (fussion). Rozložení jader s velkým A na střednětěžká jádra (s větší vazbovou energií) je základem štěpení (fission). Neutronem vyvolané štěpení - jestliže je absorbován n v těžkém jádře, vytvoří se složené jádré, pro něž je BN menší než pro původní jádro. Pro některá jádra (233U, 235U, 239Pu, 241Pu) je tato „redukce vazbové energie“ dostatečná k tomu, aby se složené jádro rozštěpilo, i když je En velice malá – štěpitelná (fissile) jádra U lehčích jader je potřeba k dosažení fúze určitá energie, některá těžká jádra jsou schopna se štěpit spontánně.
Weizsäckerova formule pro popis vazbové energie se používá tzv. Weizsäckerova formule (v rámci kapkového modelu) fitované parametry Podívejme se na vlastnosti, které jsou podobné jako u kapalin. Uvažujme jádro jako kapku nestlačitelné kapaliny držené pohromadě nasycenými silami krátkého dosahu. Obrázek je pouze ilustrační. Přesnější bude dále - je to podle W. formule. Objemový člen vyjadřuje vazbovou energii na 1N (členy jsou fitované). Je velká, ostatní členy jsou záporné. „E se uvolní při spojení nukleonu v jádro.“ Povrchový člen – N na povrchu jsou méně vázané –mají méně partnerů - přidání záporného členu úměrního povrchu S = 4 \pi R2 = 4 \pi A2/3 Coulomb člen – odpudivá síla mezi p snižuje vazb. energii, významný vliv pro těžká jádra. Bez něj by jádra byla jen z n. Pro malé vzdálenosti (malá A) je S interakce mnohem silnější než EM. Pro rovnoměrně nabitou kouli je coulombovská energie E ~ Q2/R. Pro jádro Q2 = Z2e2 a R = r0A1/3. Rovnováha mezi Coulomb a povrchovým členem dává (Z^2/A) - pokud je tento poměr příliš veliký, pak se jádra asi budou už rozpadat. Je to případ těžkých jader - nejsou stabilní. Proti coulomb členu (snaha jen n) stojí také symetrizační člen. Ten způsobuje, že je linie stability poměrně blízko přímce n=p. Poslední člen je z empirické zkušenosti, že každé jádro je jinak vázané - rozdíly v S a L jádrech.
Weizsäckerova formule - průběh linie stability Nejpravděpodobnější hodnotu Z při daném A získáme zřejmě pro Z Weizsäckerovy formule můžeme odvodit řadu zákonitostí. Separační energie neutronu, protonu a alfa: Energie získána odštěpením nukleonu nebo částice \α. Kinetická energie částice \α vyletující po rozpadu bude: Eα = [M(A,Z) – M(A-4,Z-2) – mα]c2 Je to také záporná hodnota separační energie. Z Weizsäckerovy formule lze určit energetické hranice stability pro různé rozpady a emise částic nebo štěpení. Aby však k rozpadu či štěpení opravdu došlo, musí částice překonat barieru vytvářenou potenciálem coulombovských sil. Pro jádra vznikající štěpením je to problém. Nestabilita vůči štěpení - bude dále.
Účinný průřez pravděpodobnost jaderné reakce (např. štěpení) se vyjadřuje pomocí účinného průřezu s(E) makroskopický účinný průřez S = s.N (pst. interakce n v objemové jednotce) úbytek n na dráze dx: -dI = I.s.N.dx pro homogenní terčík: I(x) = I0 e-s N x střední vzdálenost na níž dojde k interakci, vztažená na 1n je počet interakcí P, k nímž dojde v jednotce objemu za jednotku času N...hustota terčíku Jádra jsou v terčíku poměrně řídce. Dá se z makroskop hlediska popsat působení terčíku jako součet všech plošek, které tvoří terčíková jádra. Stř. vzdálenost vzdálenost, na níž dojde k int., lze vyjádřit pomocí úvahy o zeslabení tenkého svazku Občas se zavádí veličina \S. výtěžek P=\s Nj . j – tok neutronů = kolik n projde objemem za jednotku času. Pohybuje-li se n rychlostí v, potom tato hodnota vyjadřuje celkovou dráhu n za jednotku času. Je-li v jednotkovém objemu n neutronů, potom součet jejich drah n.v. Protože \l představuje střední vzdálenost mezi 2 následujícími srážkami, postačí zjistit,kolikrát se vejde do součtu drah n.v – výsledkem je vztah pro P
Umělé jaderné reakce jiné reakce než přirozené jaderné rozpady Dělení podle mechanismu reakce existují dva „krajní“ případy přímé jaderné reakce reakce přes složené jádro - probíhá ve dvou fázích: vznik složeného jádra přechod do nového stavu (závislé na vlastnostech terčíku a projektilu, energii nalétávající částice) Přímé reakce (také pružný a nepružný rozptyl) - reakce trvající velmi krátce τ ≈ 10-22s → široké (rozmazané) hladiny pomalé změny σ s energií projektilu Reakce přes složené jádro – vzniká jádro s poločasem rozpadu τ ≈ 10-16s → úzké hladiny → rychlé změny σ s energií projektilu (rezonanční charakter), rozpad do různých kanálů Přímé jad. reakce se od jdoucích přes složené jádro dají rozeznat např. pomocí úhlového rozdělení produktů. Transmutace - vzniká nové jádro se Z, A málo odlišným od jádra terčíkového Štěpení - z terčíkového jádra vznikají jako produkt obvykle 2 jádra se Z a A podstatně odlišným od terčíku. Objeveno 1939 na jádrech uranu. Tříštění - při ostřelování terčíkového jádra vzniká velký počet produktů
Složené jádro Bohr’s idea of the compound nucleus (CN): Neutron resonances observed in the middle of 1930’s by E. Fermi (obr. je z 50. let 20. stol) Bohr’s idea of the compound nucleus (CN): the narrowly spaced and narrow resonances are incompatible with independent–particle motion (IPM) and arise from strong interaction IPM (R 5 fm, V0 50 MeV) gives the Single-Particle states with spacing of several hundred keV and widths of the order of ten keV or larger evident disagreement with data CN model is needed n collides with the nucleons in the target and shares its energy it takes a long time until one of nucleons acquires sufficient energy to be re–emitted from the system.
„Rezonance“ s- and p-wave neutron strength functions Neutronové rezonance jsou sice velmi úzké, ale v n záchytu se pozorují i náznaky „jednočásticových“ stavů Neutronové silové funkce odpovídají pravděpodnobnosti, s níž je n (s energií 1 eV) zachycen v jádře (první krok ve formování složeného jádra) není přímo závislost na energii, ale A, ale píky jsou široké maxima odpovídají vypočtené pozici s-, či p- stavu na hraně jámy (energie stavu = hloubka jámy) – i výpočet z jednoduché pravoúhlé jámy dává maxima pro s-vlnové neutrony pro A 13, 58,160
„Rezonance“ Existence stavů nad prahem pro emisi částic je očekávána z QM – i částice s energií větší než je výška potenciálové bariéry cítí tuto bariéru The transmission coefficient at a potential step with E > V T = 4k1k2/(k1+k2)2 k2=2m(E−V)/ℏ k1=2mE/ℏ
Složené jádro x přímé JR Jádro zcela zapomene na to, jak vzniklo a žije „velmi dlouho“ – neutronové rezonance v těžkých jádrech mají t ≈ 10-14 s (G < 100 meV) Emise částic z jádra je – v těžišťové soustavě – izotropní Přímé JR Obecně platí, že hrají větší roli pro větší energie projektilu – De Broglie vlnová délka je menší, což umožňuje interakce s „menšími“ objekty – třeba jednotlivými nukleony (vlnová délka ≈ 1 fm odpovídá energii projektilu ≈ 10-100 MeV) úhlové rozdělení není izotropní Bohr’s wooden toy model of the compound nucleus - Nature (1936)
CN – nezávislost na vzniku Často se ukazuje tento obrázek, který má ilustrovat nezávislost vzniku. Při interpretaci a počítání často vznikají problémy s různými spiny vznikajících stavů Cross sections for the different reactions leading to the same CN. The scales of the upper axis and lower axis were adjusted to correspond to the same excitation energy of the CN
Úhlové závislosti v přímé JR Angular distribution of the reaction 31P(d,n)32S, with the transfer of a proton to several states of 32S. The curves are results of DWBA calculations for the indicated l values. Angular distribution of the elastic scattering of 17 MeV protons on nuclei in the region Z=26−30 úhlové rozdělení není izotropní – maxima u reakcí se posouvají k větším úhlům pro větší l (předaný moment hybnosti)
Umělé jaderné reakce jiné reakce než přirozené jaderné rozpady Dělení podle mechanismu reakce přímé jaderné reakce reakce přes složené jádro - probíhá ve dvou fázích: vznik složeného jádra přechod do nového stavu závislé na vlastnostech terčíku a projektilu, energii nalétávající částice Dělení podle vznikajících částic pružný rozptyl nepružný rozptyl štěpení (fission) tříštění (spalation) transmutace fúze (fussion) fotojaderné reakce Přímé reakce (také pružný a nepružný rozptyl) - reakce trvající velmi krátce τ ≈ 10-22s → široké (rozmazané) hladiny pomalé změny σ s energií projektilu Reakce přes složené jádro – vzniká jádro s poločasem rozpadu τ ≈ 10-16s → úzké hladiny → rychlé změny σ s energií projektilu (rezonanční charakter), rozpad do různých kanálů Přímé jad. reakce se od jdoucích přes složené jádro dají rozeznat např. pomocí úhlového rozdělení produktů. Transmutace - vzniká nové jádro se Z, A málo odlišným od jádra terčíkového Štěpení - z terčíkového jádra vznikají jako produkt obvykle 2 jádra se Z a A podstatně odlišným od terčíku. Objeveno 1939 na jádrech uranu. Tříštění - při ostřelování terčíkového jádra vzniká velký počet produktů
Neutron n je elektricky neutrální fermion, která podléhá silné, slabé a gravitační interakci, klidová hmotnost mn=1.67482 x 10-27 kg = 939.5656 MeV jako volná částice je neutron nestabilní - T1/2=(986±10) s Obvyklé rozdělení n podle energie Neutrony Kinetická energie Studené En < 0.025 eV Tepelné 0.025 eV < En < 0.5 eV Nadtepelné 0.5 eV < En < 100 eV Resonanční 0.1 eV < En < 1 keV Střední 100 keV < En < 1 MeV Rychlé 1 MeV < En < 20 MeV Velmi rychlé 20 MeV < En Je složený z kvarků (jeho struktura je udd), což zapříčiňuje, že i když se jedná o částici bez elektrického náboje, má nenulový magnetický moment.
Reakce vyvolané neutrony Absorpce neutronů Neutron se ztratí pro malé energie nejčastěji (n,) reakce; hlavně pro “lehká” jádra někdy i (n,a) pro větší n energie dochází k reakcím (n,p), (n,2n), (n,3n) ... Rozptyl neutronů pružný - terčíkové jádro zůstává v základním stavu nepružný - terčíkové jádro je po rozptylu ve vzbuzeném stavu vzniká neutron s jinou energií a směrem Štěpení Obecně vzniká více neutronů Volné neutrony se objevují v důsledku jaderných reakcí. Protože vazebná energie neutronů v jádře je řádově MeV, lze očekávat, že počáteční hodnoty energie volných neutronů budou též řádově MeV. Neutrony nemají elektrický náboj, neúčastní se tedy elektromagnetické interakce ani s elektronovým obalem ani s jádrem atomů. Veškeré působení neutronů s atomy se uskutečňuje pouze jadernými silami mezi neutronem a jádrem. Poloměr jádra (10-14 m) je mnohem menší než poloměr celého atomu (10-10 m), takže počet srážek neutronů s atomy je mnohem menší než u nabitých částic. Délky volných drah neutronů mezi dvěma srážkami s jádry v pevné látce jsou několik centimetrů, někdy i více než 10 cm. Dále se ukazuje, že přesto, že mezi neutrony a jádrem působí silné přitažlivé síly, je záchyt neutronu málo pravděpodobný a neutrony se na jádrech pouze rozptylují. Případný záchyt neutronu jádrem je doprovázen emisí částic s vysokou energií: g-kvant, protonů, a-částic a v případě štěpení jader-fragmentů a neutronů. Příčinou malé pravděpodobnosti záchytu neutronu je to, že proces zachycení neutronu jádrem je jadernou reakcí a probíhá mechanismem složeného jádra. Pro vytvoření složeného jádra však musí být splněny energiové a spinové podmínky a ty jsou splněny pouze v malém počtu případů. Sám fakt vytvoření složeného jádra navíc nezaručuje, že dojde k záchytu neutronu. Neutron může být totiž ze složeného jádra opět emitován. Tento jev nazýváme rezonanční rozptyl. Srážky neutronů s jádry bez vytvoření složeného jádra představují pružný rozptyl, nazývaný potenciálový rozptyl. Rozptyl neutronů tedy převládá nad záchytem neutronů. Každý neutron do doby, než je zachycen, prodělá mnoho rozptylů a každý rozptyl je spojen s odkloněním na libovolný úhel se stejnou pravděpodobností. Aby neutron mohl být zachycen, musí mít takovou energii, aby energie jádra jakožto celku byla rovna právě některé energiové hladině složeného jádra. Pokud tomu tak nebude, složené jádro prakticky nemůže vzniknout. Energie neutronu rozhoduje o tom, který z procesů nastane. Převládajícím procesem při interakcích rychlých neutronů do 10 MeV jsou pružné a nepružné srážky. Při zvyšování energie neutronů může docházet k reakcím (n,2n) nebo ke štěpení jader, což vede ke snížení podílu pružných srážek. U rychlých neutronů jsou účinné průřezy pro štěpení sudo-sudých jader nenulové, prahy dělení pro neutrony leží okolo 1 MeV. Účinné průřezy štěpících se nuklidů jsou pro rychlé neutrony malé, jako všechny ostatní účinné průřezy reakcí spojených se zachycením. Pro oblast (0,5-105) eV jsou nejcharakterističtější rezonanční jevy. Účinný průřez pro záchyt vzrůstá. V oblasti energií pod 0,5 eV probíhají reakce spojené se záchytem neutronu a vytvořením složeného jádra, které pak může prodělat g-rozpad, nebo se rozštěpí.
Hustota hladin Back-shifted Fermi-gas model Constant-temperature model Vzdálenost nejbližších hladin Poissonovo rozdělení Wignerovo rozdělení Jen naprostý základ.
Záchyt neutronů při reakci přes složené jádro (záchytu n) je obecně mnoho výstupních kanálů zejména pro malé n energie je nejdůležitějším radiační záchyt – emise fotonu(ů) Sn = B(A,Z) – B(A-1,Z)
Tvar absorpčního účinného průřezu Breit-Wigner single-level resonance formula pro jiný rozpadový kanál se jen zamění Gg na jiné (např. Gf pro štěpení) poměr Gg /G udává pst, že se zformované složené jádro rozpadne emisí fotonu jádra v materiálu se pohybují s přibližně Maxwellovským rozložením energií – účinný průřez zprůměrovaný přes pohyb terčíkových jader je: po dosazení do BW formule V mimo-resonanční oblasti energie nalétavajících n má s 1/v charakter- bude dále. Ilustrace důvodu je, že De-Broglie vlnová délka částice je dána hybností částice a tedy čím rychlejší částice, tím menší délka. Jinak lze viděti ze tvaru \s - v \s_0 je 1/k^2 a v \F je E^{1/2}.
Absorpční účinný průřez - příklady
Absorpční účinný průřez - příklady (II)
Poznámka – tvar s pro malé energie n Účinný průřez pro malé energie neutronů se chová jako 1/v Dá se to nahlédnout z „různých“ přístupů z BW formule pro En << ER z principu detailní rovnováhy – obecně pro malé energie n z jednoduchých úvah pro tvar úč. průřezu při formálním odvození (rezonancí)
Spektrum termálních neutronů Po dostatetečně dlouhé době by spektrum mělo odpovídat Maxwellovskému spektru Pro nejpravděpodobnější rychlost získáme derivací Kinetická energie odpovídající této rychlosti je Pro pokojovou teplotu je v = 2200 m.s-1; Ek = 0.0253 eV Ve skutečnosti dochází v reaktoru k absorpci n s nízkými energiemi ztvrdnutí reaktorového spectra
Parciální radiační šířky v oblasti, kde jsou vlnové funkce dostatečně komplikované (daná hladina má vlnovou funkci složenou z mnoha příspěvků) a G « D fluktuují parciální rozpadové šířky podle Porter-Thomasova rozdělení (c2 s jedním stupněm volnosti) v oblasti G > D - Ericsonovy fluktuace
Elastický účinný průřez jsou možné 2 způsoby přes složené jádro potenciální rozptyl (n není absorbován) blízko resonancí dochází k interferenci těchto 2 procesů BW formule má pak tvar opět by se mělo provést středování přes různé rychlosti terčíkových jader Ackoli je potenc. rozptyl QM (s-wave), může být vizualizován jako hard-sphere rozptyl (nezávisle na E).
Elastický účinný průřez - příklady
Štěpení reakce přes složené jádro je třeba překonat potenciálovou bariéru proces štěpení je energeticky výhodný již pro jádra s A > 80 zisk energie při dělení je ale zpočátku velmi malý a výška potenciálové bariéry příliš velká, takže při excitaci jader spíš dojde k emisi nukleonu než k dělení jádra teprve u nejtěžších jader je výška potenciálové bariéry přibližně rovna energii vazby jednoho nukleonu, takže štěpení jader se v některých případech stává převládajícím procesem z Weizsäckerovy formule se dá (porovnáním energie, která se při štěpení uvolní s energií Coulombické bariery, nebo z chování formule vůči malé změně deformace – ta se projeví v „povrchovém“ a „coulombickém“ členu) odhadnout, jaká jádra budou vůči štěpení nestabilní dostaneme, že jádra se mohou samovolně štěpit asi při občas se definuje štěpný parametr x=Z2/A/50 Železem počínaje následují mimořádně stabilní prvky, ale protože se nadále vazebná energie s rostoucím nukleonovým číslem snižuje, nejtěžší prvky jsou opět nestabilní. U těchto jader je energie vazby jednoho nukleonu průměrně o 1 MeV menší než u jader nejvíce stabilních. Protože vazebná energie je úbytek klidové energie částic ve vázaném stavu, je přeměna těžkého jádra na dvě lehčí doprovázena uvolněním energie a existence dvou lehčích jader je energeticky výhodnější. Protože však štěpení jakožto energeticky výhodný proces neprobíhá samovolně (Jediný přírodní nuklid, u něhož k samovolnému štěpení dochází, je 238U. Přeměna však probíhá tak pomalu, že energie uvolněná v určitém množství uranu za časovou jednotku je mizivá.), lze usuzovat, že průběhu dělení brání potenciálová bariéra. Při oddalování jedné části jádra od druhé zpočátku vzrůstá potenciální energie, která se po dosažení hodnoty rovné výšce bariéry začíná snižovat. Aby došlo ke štěpení, je tedy nutno překonat energii, která drží jádro pohromadě. Potřebnou energii lze dodat jádru například ve formě kinetické energie bombardující částice. Nejčastěji se k tomuto používá neutronů. Pokusy navíc ukázaly, že nejvíce jaderných přeměn nastává, použijí-li se ke střelbě místo rychlých neutrony zpomalené. Minimální energie Et, potřebná k rozštěpení jádra, se nazývá energie štěpení. Relativně malé výšky potenciálových bariér umožňují i spontánní dělení. Z kvantové mechaniky totiž plyne, že existuje malá, ale nenulová pravděpodobnost dělení i bez předchozí excitace výchozího jádra.
Štěpení Z Weizsäckerovy formule – jádra se mohou samovolně štěpit asi při Jak je to v realitě? Doby života vůči spontánnímu štěpení výrazně klesají, když se blížíme k této hodnotě Z2/A Jádra se Z2/A blízké 50 nebyla (dosud) připravena
Štěpení Z Weizsäckerovy formule – potenciální energie jádra se v závislosti na deformaci Pro velmi těžká jádra už není žádná bariéra – spontánní stěpení Jak překonat bariéru pro štěpení (pokud existuje) u jádra v základním stavu? Jádro se musí excitovat – musí se dodat E>Ef (vibrace mohou vést k velkým deformacím) (klasický obrázek) Tunelový jev (kvantový obrázek)
separační energie (MeV) Štěpení představu o velikosti potenciálové bariéry (Ef) dají experimentálně zjištěné energie štěpení g-kvanty z tabulky vyplývá, že energie štěpení u nejtěžších jader je 5.5 - 6 MeV a málo závisí na druhu jádra (asi pochopitelné z přístupu v rámci „kapkového“ modelu) relativně malé výšky potenciálových bariér umožňují i spontánní dělení bude-li excitační energie jádra vzniklého při záchytu n vyšší než prahová energie štěpení, může se jádro štěpit excitační energie jádra po záchytu n bude rovna součtu separační energie n a jeho kinetické energie obecně - lichá terčíková jádra (sudé produkty) jsou štěpitelná, sudá nikoli je to důsledek „párování“ Pro vyjasnění možnosti štěpení výchozích jader je nutno srovnávat energii excitace složených jader, vznikajících při zachycení neutronu, s výškami potenciálových bariér. Minimální energie excitace složeného jádra je rovna energii vazby zachyceného neutronu. Jestliže tato energie bude vyšší než výška potenciálové bariéry (ta je okolo 5.5 - 6 MeV), pak se může výchozí jádro štěpit při záchytu neutronu s libovolnou kinetickou energií. Jestliže energie vazby bude menší než výška bariéry, pak je štěpení možné jen tehdy, když kinetická energie neutronu bude tak velká, že její součet s energií vazby bude vyšší než výška bariéry. Energie vazby neutronu v jádře, které vznikne jako složené jádro při štěpení Můžeme si všimnout, že energie vazby párového (sudého) neutronu je vždy větší než u lichého. Z tohoto důvodu je energie vazby neutronu v jádrech 234U, 236U a 240Pu větší než výška potenciálové bariéry pro štěpení a v jádrech 233Th a 239U menší. Z toho plyne, že jádra 233U, 235U a 239Pu se mohou štěpit neutrony s libovolnou energií. Takové nuklidy se nazývají štěpící se nuklidy. Naopak 232Th a 238U se mohou štěpit pouze neutrony s dostatečně vysokou kinetickou energií, nazývají se prahové nuklidy. Práh u 232Th je okolo 1,02 MeV a u 238U okolo 1 MeV a proto nemohou udržovat řetězovou reakci. Mezi štěpitelnými těžkými nuklidy jsou nuklidy s lichým počtem nukleonů štěpící se a nuklidy se sudým počtem nukleonů prahové. 232Th a 238U mohou být zpracovány na štěpící se nuklidy a protože se nacházejí v přírodě, slouží jako surovina pro zpracování. Proces štěpení je vysvětlován na základě kapkového modelu. Jestliže jádro získá energii excitace, vzniknou v něm kmity, které způsobí, že tvar jádra se mění. Jestliže energie excitace je natolik velká, že se dosáhne kritické deformace, jádro se dělí na dvě části. Nově vzniklá jádra se elektrostaticky odpuzují a potenciální energie elektrického pole se mění na kinetickou energii jader. nuklid separační energie (MeV) 233Th 4.786 234U 6.844 236U 6.544 239U 4.806 240Pu 6.533 241Pu 5.241 nuklid prahová energie (MeV) 232Th 5.9 233U 5.5 235U 5.75 238U 5.85 239Pu
Účinný průřez pro štěpení - příklady
Štěpení - produkty štěpení část uvolněné energie při štěpení přechází na energii excitace produktů dělení energie excitace každého produktu je významně vyšší než je vazbová energie neutronů v nich, takže při přechodu jader do základního stavu jsou zpočátku emitovány neutrony a posléze g-kvanta n a g-kvanta, emitované excitovanými produkty dělení, se nazývají okamžité stabilní těžká jádra mají přebytek neutronů ve srovnání se stabilními jádry středních hmotnostních čísel Þ produkty přesyceny n a jsou proto b--RA energie b-částic a g-kvant se mění na teplo, zatímco energie antineutrin uniká, protože antineutrino prakticky neinteraguje s látkou v řídkých případech produkty dělení při b--rozpadu emitují tzv. zpožděné neutrony příklad pro jaderný reaktor má význam pouze energie, která se mění v teplo Jestliže se neutrony dostanou do moderátoru (moderátor je látka používaná k cílenému zpomalení, tj. moderaci rychlých neutronů), rychle ztrácí svoji kinetickou energii, která pak přechází na energii tepelného pohybu. Nakonec se neutrony zachycují při reakcích (n,g) a energie g-záření se také mění v teplo. Doba, za kterou dojde k záchytu neutronů, není asi 10-3 s. Po zpomalení v látce se fragmenty dělení mění na neutrální atomy s jádry v základních energiových stavech a nazývají se produkty dělení. Protože stabilní těžká jádra mají přebytek neutronů ve srovnání se stabilními jádry středních hmotnostních čísel, jsou produkty dělení přesyceny neutrony a jsou proto b--radioaktivní. Prvotních produktů dělení vzniká velmi mnoho a každý z nich se stává stabilním. Energie b--rozpadů se rozdělí mezi b-částice a antineutrina a velká část energie je také odváděna g-zářením, které b-rozpad doprovází. V řídkých případech produkty dělení při b--rozpadu emitují tzv. zpožděné neutrony. Energie b-částic a g-kvant se mění na teplo, zatímco energie antineutrin uniká, protože antineutrino prakticky neinteraguje s látkou. Celková energie štěpení obsahuje jak okamžitě se uvolňující energii, tak i energii vznikající při záchytu neutronu. Zpožděné neutrony, bez ohledu na jejich velmi malý počet, hrají významnou roli při řízení řetězové reakce v jaderných reaktorech. Kdyby totiž vznikaly jen okamžité neutrony, s každým zásahem by se stav v reaktoru neprodleně měnil. Z tohoto důvodu má význam poločas rozpadu mateřských látek, jejichž dceřiné produkty emitují opožděné neutrony, a energie opožděných neutronů. Proces vzniku opožděných neutronů může být následující: Bude-li jeden z odštěpků 87Br, může se b--rozpadem změnit na 87Kr, ale existuje i velmi malá pravděpodobnost (asi 2%) tak velké excitace jádra 87Br, že může emitovat neutron a změnit se na 86Br.
Pravděpodobnost výskytu štěpných trosek několik desítek kanálů rozpadu - píky pro 90<A<100 a 135<A<145 většinou nevznikají dva stejně těžké produkty – je to důsledek „slupkových“ jevů Většina fragmentů leží „nad“ linií stability. Pro dosažení linie stability je potřeba často několik rozpadů. 235U
Pravděpodobnost výskytu štěpných trosek většinou nevznikají dva stejně těžké produkty – je to důsledek „slupkových“ jevů vliv „asymetrie“ by se měl eliminovat při větších excitačních energiích Většina fragmentů leží „nad“ linií stability. Pro dosažení linie stability je potřeba často několik rozpadů. Cross section for the production of a mass number A fragment 238U + p
Pravděpodobnost výskytu štěpných trosek Pravděpodobnost výskytu štěpných trosek záleží i na jádře, které se štěpí Je to opět vliv slupkových efektů Fission yield curves for 11-MeV proton-induced fission of 226Ra. Data for refIected points correspond to the basis of n =3 and n = 5 (number of emitted neutrons).
Rozdělení energie uvolněné při štěpení Průměrná bilance energie při štěpení 235U produkt energie (MeV) doběh fragmenty štěpení 166.2±1.3 < mm neutrony 4.8±0.1 10-100 cm okamžité g-fotony 8.0±0.8 b-částice produktů štěpení 7.0±0.3 mm g-záření produktů štěpení 7.2±1.1 neutrina 9.6±0.5 nekonečno celkem 202.8±0.4 Spektrum štěpných n - viz další transparence \g vznikají i v důsledku radiačního záchytu štěpných neutronů Nejlehčí a nejtěžší jádra, která byla zaregistrována při dělení 235U, měla hmotnostní čísla 72 a 161. Využitelná energie z jednoho štěpení se pohybuje okolo 200 MeV (v závislosti na nuklidu) - nedá se využít vlastně jen energie neutrin 1 W = 3.1´1010 rozštěpených jader/s (1 g štěpitelného materiálu obsahuje asi 2.5´1021 jader - 1g obsahuje asi MWd tepelné energie )
Energie štěpných trosek Energy spectrum of 235U fission fragments for "slow" neutrons Energy spectrum of 235U fission fragments for "fast" neutrons.
Využitelná energie Energie, kterou je možno využít při štěpení jednotlivých isotopů (v MeV) Isotope Thermal n Fission n 233U 190.0 - 235U 192.9 239Pu 198.5 241Pu 200.3 232Th 184.2 234U 188.9 236U 191.4 238U 193.9 237Np 193.6 238Pu 196.9 240Pu 242Pu 200.0
Ustálené složení produktů složení produktů dělení se mění v důsledku b-rozpadu pokud však proces dělení pokračuje dostatečně dlouho, pak se u většiny radioaktivních produktů dosáhne rovnovážného stavu a jejich množství se nemění v rovnovážném stavu je 25% produktů prvků ze skupiny vzácných zemin 16% Kr+Xe 15% Zr 12% Mo 6,5% Cs
Pravděpodobnost výskytu štěpných trosek několik desítek kanálů rozpadu - píky pro 90<A<100 a 135<A<145 většina fragmentů jsou n bohaté (nestabilní) isotopy - dále se rozpadají b-rozpadem, případně emisí n (zpožděné neutrony) průměrně jsou při štěpení emitovány 2-3 n přesné číslo záleží na mateřském jádře a energii nalétajícího n střední počet n na 1 štěpení (tepelnými neutrony): 235U – 2.42 239Pu – 2.86 (roste s energií neutronu) Většina fragmentů leží „nad“ linií stability. Pro dosažení linie stability je potřeba často několik rozpadů. 235U
Štěpná řetězová reakce štěpitelný nuklid + n ® 2 štěpné trosky + n + energie existuje asi 30 možných kanálů štěpitelné nuklidy jsou pouze některé – užívá se U, Pu vzniklé n mohou být použity pro následující stěpení výsledkem je řetězová reakce (pokud ji umíme řídit, může být využita) střední počet n na 1 štěpení (tepelnými neutrony): 235U – 2.42 239Pu – 2.86 je-li > 1 pak přes ztráty n únikem a jinými reakcemi může běžet štěpná reakce
Spektrum štěpných neutronů Spektrum štěpných neutronů je možné dostatečně přesně popsat pomocí jednoduchých empirických vztahů, např. kde parametry a, b určeny z exp. pro 235U: a=1.872 MeV-3/2, b=1.29 MeV případně (pro štěpení 235U) Střední energie neutronů je asi 2 MeV Střední energie neutronů štěpení pro tento případ je okolo 2 MeV, energie maxima rozdělení okolo 0,7 MeV. Byly zaregistrovány i neutrony s energií do 18 MeV, ovšem počet neutronů s energií vyšší než 10 MeV je tak malý, že nemají prakticky význam. Proto můžeme předpokládat, že spektrum energií neutronů štěpení končí u 10 MeV. Ve spodní části spektra pak pouze méně než 0,5% všech okamžitých neutronů má menší energii než 0,05 MeV.
Neutronové spektrum v reaktoru v tepelném reaktoru má v oblasti asi 1 eV - 100 keV spektrum n tvar přibližně 1/E důsledek toho, že elastické srážky „odebírají“ průměrně konstantní část energie při kolizi In the thermal reactor, the flux in the intermediate energy region (1 eV to 0.1 MeV) has approximately a 1/E dependence. That is, if the energy (E) is halved, the flux doubles. This 1/E dependence is caused by the slowing down process, where elastic collisions remove a constant fraction of the neutron energy per collision (on the average), independent of energy; thus, the neutron loses larger amounts of energy per collision at higher energies than at lower energies. The fact that the neutrons lose a constant fraction of energy per collision causes the neutrons to tend to "pile up" at lower energies, that is, a greater number of neutrons exist at the lower energies as a result of this behavior. For the thermal reactor (water moderated), the spectrum of neutrons in the fast region (> 0.1 MeV) has a shape similar to that for the spectrum of neutrons emitted by the fission process. In the thermal region the neutrons achieve a thermal equilibrium with the atoms of the moderator material. In any given collision they may gain or lose energy, and over successive collisions will gain as much energy as they lose. These thermal neutrons, even at a specific temperature, do not all have the same energy or velocity; there is a distribution of energies, usually referred to as the Maxwell distribution. neutronové spektrum tepelného a rychlého reaktoru
THE END
Jak vyvolat umělou jadernou reakci
Úplným rozštěpením 1 kg U se získá energie 1 MWday Výtěžnost jednotlivých paliv Rozdělení uvolněné energie Energie trosek >80% Energie neutrin 5% Energie neutronů 3% Energie elektronů 4% Energie fotonů 7% nafta 1.3x102 m3 uhlí 2x102 m3 plyn 3x105 m3 uran 4x10-6 m3 Úplným rozštěpením 1 kg U se získá energie 1 MWday
Neutronová aktivační analýza po ozařování n vzniká nestabilní isotop, který se rozpadá emisí a, či b a následnou emisí g po určité době se proměří g spektrum emitované vzorkem a stanoví se tak prvkové složení vzorku (kvalitativní i kvantitativní) možnost detekce velkého množství prvků najednou citlivost: hmotnostních 10-9 používá se zejména pro analýzu aerosolu, popilku, hornin, uhlí, rud, kovů a dalších materiálů
Příklady g spekter