KVANTOVÁNÍ ELEKTRONOVÝCH DRAH

Slides:



Advertisements
Podobné prezentace
Pravidla pro obsazování atomových orbitalů
Advertisements

Stavba atomu.
MAGNETICKÉ VLASTNOSTI LÁTEK
CHEMIE
Střední odborné učiliště Liběchov Boží Voda Liběchov Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona: Jádro atomu Předmět: Fyzika.
Stavba atomu.
ELEKTRONOVÁ PARAMAGNETICKÁ (SPINOVÁ) REZONANCE
Tato prezentace byla vytvořena
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
Architektura elektronového obalu
6 Kvantové řešení atomu vodíku a atomů vodíkového typu
ELEKTRONOVÝ OBAL.
Struktura atomového obalu
Kvantová čísla CH-1 Obecná chemie, DUM č. 7 Mgr. Radovan Sloup
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvkováorganizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
ČÁSTICOVÉ SLOŽENÍ LÁTEK
Radiální elektrostatické pole Coulombův zákon
Struktura atomu.
Každý z nábojů na povrchu tvoří uzavřenou proudovou smyčku.
ELEKTRONOVÝ OBAL ATOMU I
Jan Čebiš Vývoj modelu atomu.
Výstavbový princip Periodickou tabulku lze využít také pro určení elektronové konfigurace prvku (protonové číslo=počet elektronů)-jen u atomu!!! Postupně.
ATOM.
2.3 Mechanika soustavy hmotných bodů Hmotný střed 1. věta impulsová
Modely atomů.
Elektronový obal atomu
Kovalentní vazby H Atomy vodíku - chybí 1 elektron do plného zaplnění elektronové slupky.
4.2 spinový a orbitální moment
Obal atomu, uspořádání elektronů
IONIZACE Ionizační energie atomu je definována jako práce potřebná k odtržení a úplnému vzdálení nejslaběji poutaného elektronu z atomu v základním stavu.
Jak pozorujeme mikroskopické objekty?
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
Elektrotechnologie 5.
Pohyb nabité částice v homogenním magnetickém poli
Periodická soustava prvků
Elektrotechnologie 1.
Stavba atomového jádra
Kvantová čísla Dále uvedené vztahy se týkají situací se sféricky symetrickým potenciálem (Coulombův potenciálV těchto situacích lze současně měřit energii,
Výstavba elektronového obalu „Pravidlo minimální energie“
Znázorňování orbitalů
Ještě trochu něco více o atomech.
III. ATOM – ELEKTRONOVÝ OBAL
Kvantová čísla Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Elektronová struktura atomů
Struktura atomu a chemická vazba
Polovodič - měrný odpor Ω -1 m Ω -1 m -1 závisí na teplotě, na poruchách krystalové mříže koncentraci příměsí, na el. a mag. poli, na záření.
1 Fyzika 2 – ZS_6 Atom vodíku. 2 Fyzika 2 – ZS_6.
ČÁSTICOVÉ SLOŽENÍ LÁTEK
Atomy nejsou dále dělitelné chemickými postupy (využití chemických reakcí). •Po objevu vnitřní struktury atomu a jeho jádra víme, že atomy nepředstavují.
Zákonitosti mikrosvěta
Model atomu 1nm=10-9m 1A=10-10m.
Elektronová konfigurace
6 Kvantové řešení atomu vodíku a atomů vodíkového typu 6.2 Kvantově-mechanické řešení vodíkového atomu … Interpretace vlnové funkce vodíkového atomu.
Hmota se skládá z malých, dále nedělitelných částic – atomů (atómós = nedělitelný) Tvar atomů – podle živlů Myšlenky - ověřeny za2500let.
Atomy a molekuly.
ELEKTROTECHNIKA Elektronová teorie. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_41_11 Název materiáluAtomy s.
Mgr. Dagmar Muzikářová Gymnázium Brno, Elgartova 2016/2017
Elektronový obal atomu
IONTY Co jsou ionty Co je elektronegativita a jak souvisí s ionty
Znázorňování orbitalů
Elektronový obal atomu
Elektronový obal.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je
Typy vazeb.
Stavba atomu.
Elektrické vlastnosti látek
elektronová konfigurace atomu
Excitovaný stav atomů Mgr. Dagmar Muzikářová Gymnázium Elgartova, Brno
Anorganická chemie Stavba atomu
Transkript prezentace:

KVANTOVÁNÍ ELEKTRONOVÝCH DRAH Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického vlnění při dopadu na povrch kovu. Obrázky solárních panelů (problematice souvislosti solárních panelů a fotoelektrického jevu se budeme dále v prezentaci věnovat věnovat).

KVANTOVÁNÍ ELEKTRONOVÝCH DRAH A. Sommerfeld zkoumal strukturu atomů KVANTOVÁNÍ ELEKTRONOVÝCH DRAH A. Sommerfeld zkoumal strukturu atomů. Předpokládal a dokázal prostorové uspořádání drah elektronů u atomů jednotlivých prvků. Veličiny charakterizující prostorovou orientaci oběžné dráhy: • moment hybnosti - Při hlavním kvantovém čísle n může moment hybnosti elektronu nabývat jen určitých diskrétních hodnot, určených orbitálním kvantovým číslem (vedlejším kvantovým číslem) 0 ≤ l ≤ n −1 • magnetický moment elektronu – elektron má spinový magnetický moment . Spin (mají ho elektrony i jádra) je projevem kvantově mechanických vlastností částic => rotační osa elektronu je kolmá k rovině oběžné dráhy elektronu a elektron se kolem své osy otáčí v kladném nebo záporném smyslu. Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického vlnění při dopadu na povrch kovu. Obrázky solárních panelů (problematice souvislosti solárních panelů a fotoelektrického jevu se budeme dále v prezentaci věnovat věnovat).

Pohybový stav elektronu je určen plně 4 kvantovými čísly: ZÁKLADNÍ STAVY ATOMŮ Pohybový stav elektronu je určen plně 4 kvantovými čísly: n – určuje jeho energii, l – orbitální moment hybnosti, m – orbitální magnetický moment, s – vlastní moment hybnosti (vlastní magnetický moment). Nejnižší energie atomu vodíku přísluší první kvantové dráze (n = 1). Není možné, aby základní stav (s minimální energií) zaujímaly ostatní atomy tak, že všechny elektrony budou v první kvantové dráze. Pauliho vylučovací princip – řídí se jím rozložení elektronů v atomu. V témže atomu může mít určitý pohybový stav (daný 4 kvantovými čísly) pouze jediný elektron (v téže dráze mohou obíhat pouze dva elektrony s opačným spinem). Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického vlnění při dopadu na povrch kovu. Obrázky solárních panelů (problematice souvislosti solárních panelů a fotoelektrického jevu se budeme dále v prezentaci věnovat věnovat).

Vnitřní elektrony – elektrony v úplných slupkách ZÁKLADNÍ STAVY ATOMŮ Ve všech drahách příslušných k hlavnímu kvantovému číslu n může současně obíhat sn = 2n2 elektronů. Obsazení jednotlivých slupek (sn – počet elektronů obíhajících na drahách příslušejících n) K n = 1 sn = 2 L n = 2 sn = 8 M n = 3 sn = 18 N n= 4 sn = 32 O n = 5 sn = 50 P n = 6 sn = 72 Pokud jsou v atomu obsazeny plně nejnižší slupky, platí , že atom je v základním (nevzbuzeném) stavu. Opačný stav = excitace. Vnitřní elektrony – elektrony v úplných slupkách Valenční elektrony – elektrony v neúplné krajní obvodové slupky. Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického vlnění při dopadu na povrch kovu. Obrázky solárních panelů (problematice souvislosti solárních panelů a fotoelektrického jevu se budeme dále v prezentaci věnovat věnovat).

ZÁKLADNÍ STAVY ATOMŮ Atomy s jedním obvodovým elektronem tvoří po odtržení valenčního elektronu kladné jednomocné ionty (H+, Li+, Na+, K+...), Atomy se dvěma obvodovými elektrony kladné dvojmocné ionty (Be2+, Mg2+, Ca2+...). Atomy prvků, kde do úplného obsazení vnější slupky chybí méně než polovina plného počtu elektronů, které by slupku obsadily, tvoří záporné ionty připoutáním jednoho nebo více elektronů (F-, Cl-, O2-, S2-...). Fotoelektrický jev byl poprvé popsán v roce 1887 Heinrichem Hertzem. Pozoroval z pohledu tehdejší fyziky nevysvětlitelné chování elektromagnetického vlnění při dopadu na povrch kovu. Obrázky solárních panelů (problematice souvislosti solárních panelů a fotoelektrického jevu se budeme dále v prezentaci věnovat věnovat).