04. 03. 20071 FI-05 Úvod do nauky o gravitaci. 04. 03. 20072 Hlavní body Keplerovy zákony Newtonův gravitační zákon Gravitační pole v blízkosti Země Planetární.

Slides:



Advertisements
Podobné prezentace
GRAVITAČNÍ POLE Základní pojmy Newtonův gravitační zákon
Advertisements

Přeměny energií Při volném pádu se gravitační potenciální energie mění na kinetickou energii tělesa. Při všech mechanických dějích se mění kinetická energie.
Gravitační pole.
MECHANICKÁ PRÁCE A ENERGIE
Elektrostatika.
Mgr. Ladislav Dvořák PdF MU, Brno
Keplerovy zákony.
Mechanika tuhého tělesa
GRAVITACE Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
5. Práce, energie, výkon.
Vypracoval: Petr Hladík IV. C, říjen 2007
Dynamika rotačního pohybu
C) Dynamika Dynamika je část mechaniky, která se zabývá vztahem síly a pohybu 2. Newtonův pohybový zákon zrychlení tělesa je přímo úměrné síle, která jej.
Soustava částic a tuhé těleso
FI-05 Mechanika – dynamika II
FII-3 Elektrický potenciál Hlavní body Konzervativní pole. Existence elektrického potenciálu. Práce vykonaná na náboji v elektrickém.
Radiální elektrostatické pole Coulombův zákon
Fyzika.
Dynamika.
Vypracovala: Bc. SLEZÁKOVÁ Gabriela Predmet: HE18 Diplomový seminár
Popis časového vývoje Pohyb hmotného bodu je plně popsán závislostí polohy na čase. Otázkou je, jak zjistit vektorovou funkci času ~r (t), která pohyb.
Gravitační pole Gravitační síla HRW kap. 14.
Jiný pohled - práce a energie
Pohyby těles v homogenním tíhovém poli a v centrálním gravitačním poli
GRAVITAČNÍ POLE.
FIFEI-06 Gravitační a elektrostatické působení II
Kruhový pohyb Určení polohy Polární souřadnice r, 
VY_32_INOVACE_11-06 Mechanika II. Gravitační pole.
Gravitační pole Newtonův gravitační zákon
Mechanika Gravitační pole.
PRÁCE V HOMOGENNÍM ELEKTRICKÉM POLI.
Gravitační síla a hmotnost tělesa
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _620 Výukový materiál zpracován v rámci projektu EU peníze školám.
4.Dynamika.
4. Přednáška – BOFYZ gravitační pole
FII-4 Elektrické pole Hlavní body Vztah mezi potenciálem a intenzitou Gradient Elektrické siločáry a ekvipotenciální plochy Pohyb.
Gravitace (gravitační síla, tíhová síla)
Mechanika soustavy hmotných bodů zde lze stáhnout tuto prezentaci i učební text, pro vaše pohodlí to budu umisťovat také.
FII-02 Elektrické pole a potenciál Hlavní body Konzervativní pole. Existence elektrického potenciálu. Práce vykonaná na náboji.
FI-10 Kmity a vlnění I
Gravitační pole Pohyby těles v gravitačním poli
dynamika hmotného bodu, pohybová rovnice, d’Alembertův princip,
GRAVITACE Fy – prima Yveta Ančincová.
Gravitační síla, gravitační pole
FFZS-03 Mechanika – dynamika soustav hmotných bodů a tuhých těles
Rovnováha a rázy.
VÝKON A PŘÍKON.
Dynamika bodu. dynamika hmotného bodu, pohybová rovnice,
Dj j2 j1 Otáčivý pohyb - rotace Dj y x POZOR!
Mechanika IV Mgr. Antonín Procházka.
ŠkolaStřední průmyslová škola Zlín Název projektu, reg. č.Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávací.
Fyzika pro lékařské a přírodovědné obory Ing. Petr VáchaZS – Mechanika tuhého tělesa.
G RAVITAČNÍ POLE Mgr. Kamil Kučera. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Materiál je určen pro bezplatné používání pro.
Mechanika tuhého tělesa Kateřina Družbíková Seminář z fyziky 2008/2009.
Fyzika I-2016, přednáška Dynamika hmotného bodu … Newtonovy zákony Použití druhého pohybového zákona Práce, výkon Kinetická energie Zákon zachování.
Gravitační pole – princip superpozice potenciál: v poloze [0,0] v poloze [1,0.25]
Pohyby těles v homogenním tíhovém poli a v centrálním gravitačním poli
Rovnoměrný pohyb po kružnici a otáčivý pohyb
13. Gravitační pole – základní pojmy a zákony
F  0 R S g L = ? G N() t n (t) N G T x y.
Gravitační pole Gravitační síla HRW2 kap. 13 HRW kap. 14.
Tření smykové tření pohyb pokud je Fv menší než kritická hodnota:
změna tíhové potenciální energie = − práce tíhové síly
Otáčení a posunutí posunutí (translace)
Tuhé těleso Tuhé těleso – fyzikální abstrakce, nezanedbáváme rozměry, ale ignorujeme deformační účinky síly (jinými slovy, sebevětší síla má pouze pohybové.
Gravitační pole Potenciální energie v gravitačním poli:
MECHANIKA TUHÉHO TĚLESA
2. Centrální gravitační pole
2. Centrální gravitační pole
Pohyby v gravitačním poli jednoho tělesa
Transkript prezentace:

FI-05 Úvod do nauky o gravitaci

Hlavní body Keplerovy zákony Newtonův gravitační zákon Gravitační pole v blízkosti Země Planetární pohyby Konzervativní pole Potenciál a potenciální energie Proč shořel raketoplán Columbia Moderní teorie gravitace

Úvod do gravitace Setkáváme se s první dalekodosahovou silou, se silou gravitační. Jejím prostředníctvím na sebe hmotné body působí, aniž by byly v přímém vzájemném kontaktu. Na základě gravitačního působení funguje nebeská mechanika. Gravitační zákon je zobecněním dlouhodobých astronomických pozorování.

Keplerovy zákovy Tisíciletá astronomická pozorování a hlavně velmi přesná měření Tychona Braheho ( ) byla shrnuta Johannesem Keplerem ( ) do tří zákonů: Planety se pohybují kolem Slunce po elipsách, blízkých kružnicím. Slunce je v jejich společném ohnisku. Při pohybu určité planety je její plošná rychlost konstantní. Při srovnání drah dvou různých planet platí pro jejich doby oběhu a dlouhé periody:

Newtonův gravitační zákon I Keplerovy zákony byly později geniálně shrnuty do všeobecného gravitačního zákona Issacem Newtonem : Každé dva hmotné body na sebe působí přitažlivou silou, která působí ve směru jejich spojnice. Je přímo úměrná součinu jejich hmotností a nepřímo úměrná druhé mocnině jejich vzdálenosti.

Newtonův gravitační zákon II Pro jednoduchost umístíme m 1 do počátku a poloha m 2 bude určena polohovým vektorem. Potom síla působící na bod m 2 v důsledku existence bodu m 1 je :

Newtonův gravitační zákon II Gravitačně na sebe působí libovolné hmotnosti.  = Nm 2 kg -2 … je univerzální gravitační konstanta “-” znamená, že se vždy jedná o sílu přitažlivou Při vzájemném působení více hmotných bodů platí princip superpozice  silové působení mezi dvěma hmotnými body nezávisí na rozložení jiných hmotností v jejich okolí, dokonce ani na hmotnosti ležící mezi nimi.

* Od Keplera k Newtonovi I 2. K. z.  gravitační síla je centrální Plošná rychlost je definována: Zjevně úzce souvisí s momentem hybnosti Zachování plošné rychlosti je tedy ekvivalentní zachování momentu hybnosti. To podle druhé impulsové věty znamená, že moment gravitační síly je nulový. Tato nenulová síla tedy musí být buď paralelní nebo antiparalelní vzhledem k průvodiči. Protože je přitažlivá je antiparalelní.

* Od Keplera k Newtonovi II 2. K. z.  gravitační síla je centrální Pro zjednodušený případ, kružnici, znamená konstantní plošná rychlost i konstantní úhlovou rychlost a tedy nulové úhlové zrychlení, což opět svědčí o nulové výslednici momentu sil a tedy i o tom, že gravitační síla je centrální. Pohyb po eliptické dráze je podobný jako pohyb na ‘horské dráze’ – těleso může zrychlovat i zpomalovat, ale zachovává se celková mechanická energie, tedy součet kinetické a potenciální energie a moment hybnosti.

* Od Keplera k Newtonovi III 3. K. z.  gravitační síla ubývá se čtvercem vzdálenosti. Důkaz současnými prostředky je snadný, ale z Newtonových zápisků není dodnes jasné, jak na to přišel pomocí matematického aparátu, který byl známý v jeho době.

* Od Keplera k Newtonovi IV Pro kružnici, předpokládejme že platí: po úpravě: Podle 3. K.z. Musí být pravá strana konstantní a nesmí tedy záviset na r. To je splněno jen když je  = 0.

Gravitační pole I Gravitační pole si představujeme jako informaci, kterou o sobě šíří hmotné body do svého okolí nese údaje o jejich hmotnosti a poloze šíří se rychlostí světla na tuto informaci reagují jiné zdroje stejného typu pole = hmotnosti tím, že na ně působí síla

Gravitační pole II Gravitační pole je pole vektorové. Mohli bychom ho plně charakterizovat, v každém bodě třemi složkami síly, která působí na nějakou testovací hmotnost m. Výhodnější je tuto sílu vydělit testovací hmotností, čímž získáme intenzitu, která na ní již nezávisí a je tedy jednoznačnou vlastností pole.

Gravitační pole III Intenzitu lze také chápat jako sílu, která by v daném bodě působila na jednotkovou hmotnost. Intenzita ale nemá rozměr síly, nýbrž síly dělené hmotností a tedy i jinou jednotku [N/kg].

Gravitační pole v blízkosti Země I Gravitační pole v těsné blízkosti Země lze charakterizovat intenzitou. Její velikost nazýváme gravitačním zrychlením. Po korekcích gravitačního zrychlení a g = 9.83 ms -2 na různé vlivy, zvláště rotaci Země, dostáváme měřitelné tíhové zrychlení. Jeho střední hodnota je g = 9.81 ms -2.

Gravitační pole v blízkosti Země II Ve vztahu vystupuje součin  M.  se musí určit z nezávislého měření v laboratoři. Například na torzních vahách. Díky tomu je možné v laboratoři ‘vážit‘ nebeská tělesa. Tíhové zrychlení vykazuje drobné odchylky v důsledku nepřesně kulového tvaru Země a nehomogenit její hmotnosti a polohy na ní. Toho se využívá při geologickém průzkumu

Gravitační pole v blízkosti Země III Zemi je možné vážit z gravitačního zrychlení nebo z pohybu Měsíce. Příklad : Určete M a  M z  a g.

Konzervativní pole Gravitační pole se řadí mezi takzvaná pole konzervativní. Celková práce potřebná na přenesení hmotnosti po libovolné uzavřené dráze je nulová. Práce potřebná na přenesení hmotnosti m z bodu A do bodu B nezávisí na cestě, ale jenom na nějaké skalární vlastnosti pole v těchto bodech = potenciálu . W(A->B) = m  (B) - m  (A)

Potenciál I Je třeba správně chápat rozdíl mezi potenciálem, což je vlastnost pole a potenciální energii, což je vlastnost určitého hmotného tělesa v tomto poli. Výhody popisu pole pomocí potenciálu : Skalární Princip superpozice vede na aritmetické sčítání Lépe konverguje

Potenciál II Potenciál v jistém bodě centrosymetrického pole získáme rozdělením potenciální energie na vlastnost pole a vlastnost částice: Potenciál Potenciál v kalibraci c=0 :

Potenciál III Obecně je pohodlnější popisovat gravitační pole pomocí potenciálu, ale na jeho základě je nutné umět vypočítat intenzitu a sílu : V centrosymetrickém případě :

Gradient I Gradient skalární funkce je vektor, který má směr největšího růstu funkce v daném bodě velikost danou přírustku funkce v jednotkové vzdálenosti od daného bodu v tomto směru :

Gradient II Gradient je trojrozměrnou obdobou diferenciálu : Význam gradientu vyplývá z faktu, že skalární součin bude maximální, když jsou jeho činitelé paralelní.

Zákon zachování energie I Práce dodaná do systému se rovná přírůstku jeho celkové energie, který je roven součtu přírůstku kinetické a přírůstku potenciální energie. Jak se přírůstky konkrétně rozdělí závisí na dalších podmínkách problému. Je-li práce kladná může se kinetická energie i snížit, ale její pokles musí být vykompenzován odpovídajícím vzrůstem energie potenciální

Zákon zachování energie II Je-li práce dodaná do systému nulová zachovává se celková energie, tedy součet energie kinetické a potenciální. (Zatím uvažujeme jen tyto dva druhy energie). Jeden druh energie se ale může měnit v druhý. V těsné blízkosti Země :

Pohyb satelitů I Obecně se tělesa otáčejí kolem společného těžiště. Je-li satelit podstatně lehčí než centrální těleso lze společné těžiště ztotožnit s těžištěm centrálního tělesa. Uvažujme pro jednoduchost kruhovou dráhu. V prvním přiblížení je dostředivá síla realizována silou gravitační a platí :

Pohyb satelitů II Můžeme například vyjádřit rychlost oběhu : Nyní chápeme 3. Keplerův zákon pro satelity obíhající stejné centrální těleso:

Pohyb satelitů III Jsou-li hmotnosti těles srovnatelné, musí se uvažovat pohyb kolem jejich společného těžiště. Čili dochází i k pohybu centrálního tělesa. Takto lze vysvětlit příliv a odliv nebo odhalit exoplanety u vzdálených hvězd. Používá se přímého pozorování a moderněji spektroskopických metod (136).

Kosmická rychlost 1. Kosmická rychlost je rychlost oběhu těsně u povrchu vesmírného tělesa. Tedy zakřivení dráhy vodorovného vrhu akorát kopíruje povrch tělesa. Takový pohyb je možný pouze, když těleso nemá atmosféru, jinak je zbržděno (a shoří). V případě Země se jedná o hodnotu fiktivní :

Kosmická rychlost 2. Kosmická neboli úniková rychlost je taková, při které má těleso kinetickou energii dostatečnou k tomu, aby se dostalo z dosahu Země do nekonečna Opět nesmí dojít ke ztrátám průletem atmosférou Rozdíl od rychlosti potřebné k dosažení např. Měsíce je ale nepatrný.

Kosmická rychlost 3. Kosmická neboli úniková rychlost je taková, při které má těleso kinetickou energii dostatečnou k tomu, aby se dostalo ze Země z dosahu Slunce do nekonečna Úniková rychlost z oběžné dráhy Země je M s je hmotnost Slunce, r sz je poloměr dráhy Země. Při vypuštění sondy ve směru obíhání Země lze ale odečíst obvodovou rychlost Země, tedy cca 30 km/s.

Proč shořela Columbie I Celková energie satelitu : Kde jsme použili dříve odvozený vztah pro rychlost satelitu:

Proč shořela Columbie II Podle předchozího se celková energie satelitu musí zvětšit dodáme-li práci. Přitom : se zvětší její vzdálenost její rychlost se zmenší(!) Když naopak satelit vstupuje do atmosféry a je bržděn atmosférou nebo svými motory, klesá jeho výška, ale roste rychlost. Musí tedy (v určité fázi letu, například než může letět jako letadlo nebo být bržděno padáky) vydržet obrovské teploty.

Moderní teorie gravitace Albert Einstein se zabýval ekvivalencí gravitační a setrvačné hmotnosti na ní a na předpokladu, že fyzikální zákony musí v každé (i neinerciální) soustavě být stejné vybudoval obecnou teorii relativity. Podle ní hmotnost zakřivuje časoprostor ve svém okolí. Experimentálními potvrzeními této teorie jsou například ohyb elektromagnetických vln v blízkosti velkých těles (Slunce, Jupiter) a stáčení roviny oběhu Merkura.

Příklad - potenciál I Spočítejme práci, kterou musíme (jako vnější činitel) dodat pro přemístění hmotnosti m z r A do r B v centrálním poli jisté hmotnosti M. Závisí jen na vzdálenostech od tělesa a práci musíme dodávat jen při zvětšování r, protože působíme proti přitažlivé síle.

Příklad - potenciál II Tuto práci chápeme jako přírůstek potenciální energie srovnáním

Příklad - potenciál III Práce dodaná tělesu vnějším činitelem zvýší jeho potenciální energii. Tu obecně definujeme včetně integrační konstanty c, dané kalibrací: Často předpokládáme, že potenciální energie v nekonečnu je nulová, což odpovídá c=0 : ^