Modely atomu John Dalton 1766 – 1844 Joseph L. Proust 1754 – 1826

Slides:



Advertisements
Podobné prezentace
STRUKTURA HMOTY.
Advertisements

O historii poznatků o stavbě atomu
KINETICKÁ TEORIE STAVBY LÁTEK.
Atom Složení a struktura atomu Jádro atomu, radioaktivita
Historie chemie E = m c2 Zákon zachování hmoty:
Architektura elektronového obalu
Radiální elektrostatické pole Coulombův zákon
Struktura atomu.
Každý z nábojů na povrchu tvoří uzavřenou proudovou smyčku.
Atomová fyzika Podmínky používání prezentace
ELEKTRONOVÝ OBAL ATOMU I
Jan Čebiš Vývoj modelu atomu.
ATOMY Patrik Pazourek, Lukáš Pipek, Tereza Brožová, Iveta Gajdošová.
registrační číslo CZ.1.07/1.5.00/
Atomovová a jaderná fyzika
 Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_19  Název materiálu: Fyzika elektronového obalu atomu.  Tematická oblast:Fyzika 2.ročník  Anotace:
Modely atomů.
Relace neurčitosti Jak pozorujeme makroskopické objekty?
Elektromagnetické spektrum
VÝVOJ PŘEDSTAV O STAVBĚ ATOMU
Kvantové vlastnosti a popis atomu
1 ÚVOD.
Od Démokrita po kvantově mechanický model atomu
ŠkolaZákladní škola Zlín, Nová cesta 268, příspěvková organizace Vzdělávací oblastČlověk a příroda Vzdělávací oborFyzika 9 Tematický okruhAtomy a záření.
Fysika mikrosvěta Částice, vlny, atomy. Princip korespondence  Klasická fysika = lim kvantové fysiky h→0  Klasická fysika = lim teorie relativity c→∞
„Svět se skládá z atomů“
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Modely atomu Demokritos 460 – 370 př.n.l.
Spektra látek Při průchodu světla optickým hranolem vzniká v důsledku disperze světla tzv. hranolové spektrum.   Podobné spektrum vzniká také při průchodu.
Tento materiál byl vytvořen jako učební dokument projektu inovace výuky v rámci OP Vzdělávání pro konkurenceschopnost VY_32_INOVACE_B3 – 09.
Chemicky čisté látky.
Obal atomu, uspořádání elektronů
Jak pozorujeme mikroskopické objekty?
Tento výukový materiál vznikl v rámci Operačního programu Vzdělávání pro konkurenceschopnost 1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,
ŠablonaIII/2číslo materiálu387 Jméno autoraMgr. Alena Krejčíková Třída/ ročník1. ročník Datum vytvoření
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření:
Od Demokrita ke kvarkům
Historie elektronového obalu atomu
1. část Elektrické pole a elektrický náboj.
KVANTOVÁNÍ ELEKTRONOVÝCH DRAH
Modely atomů Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0115.
Částicová fyzika Zrod částicové fyziky Přelom 18. a 19. století
Atomy nejsou dále dělitelné chemickými postupy (využití chemických reakcí). •Po objevu vnitřní struktury atomu a jeho jádra víme, že atomy nepředstavují.
Model atomu (Učebnice strana 45 – 47)
9.1 Magnetické pole ve vakuu 9.2 Zdroje magnetického pole
Didaktický učební materiál pro ZŠ
Model atomu 1nm=10-9m 1A=10-10m.
Vysvětlení? problém vnitřní struktury atomů- kladný a záporný (elektrony) náboj - radioaktivita, rozpady - kolik elektronů v atomu - rozložení náboje -
6 Kvantové řešení atomu vodíku a atomů vodíkového typu 6.2 Kvantově-mechanické řešení vodíkového atomu … Interpretace vlnové funkce vodíkového atomu.
Číslo projektuCZ.1.07/1.5.00/ Název školyGymnázium, Soběslav, Dr. Edvarda Beneše 449/II Kód materiáluVY_32_INOVACE_41_09 Název materiáluKvantování.
Hmota se skládá z malých, dále nedělitelných částic – atomů (atómós = nedělitelný) Tvar atomů – podle živlů Myšlenky - ověřeny za2500let.
Částicový charakter světla
Elektronový obal atomu
stavba atomu – historie 1
Model atomu.
MODEL ATOMU Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. VY_32_INOVACE_15_32.
Vývoj názorů na atom Mgr. Kamil Kučera.
NITRO ATOMU.
Elektronový obal atomu
Elektronový obal.
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha-východ
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha-východ
TĚLESO A LÁTKA.
„Svět se skládá z atomů“
NITRO ATOMU.
Základní škola a mateřská škola Damníkov
Stavba atomového jádra
Fyzika elektronového obalu
Fyzika mikrosvěta.
„Svět se skládá z atomů“
Transkript prezentace:

Modely atomu John Dalton 1766 – 1844 Joseph L. Proust 1754 – 1826 V devatenáctém století nastupuje atomismus chemický. Francouzský chemik J. Proust při studiu redukčně-oxidačních reakcí zjistil, že látky se slučují jen v určitých hmotnostních poměrech. Anglický chemik J. Dalton dále zjistil, že některé chemické prvky se mohou slučovat i ve více poměrech. O C CO CO2 Obě tyto zákonitosti (Zákon stálých poměrů slučovacích, Zákon násobných poměrů slučovacích) lze vysvětlit tak, že prvky se skládají z atomů a sloučeniny z molekul – spojení několika atomů.

Modely atomu Demokritos 460 – 370 př.n.l. Myšlenka, že látka není spojitá, má strukturu a skládá se z atomů pochází z antiky. Propagovali ji filozofové jako Demokritos, Epikuros a další. Pierre Gassendi 1592 – 1655 Isaac Newton 1643 – 1727 Na antický atomismus navazovali mnozí filozofové a fyzikové novověku, např. francouzský matematik a astronom Pierre Gassendi nebo Isaac Newton. Pro své domněnky však neměli jediný důkaz.

Modely atomu Joseph L. Gay-Lussac 1778 – 1850 Hypotézu atomů potvrdily i další objevy. Francouzský fyzik J. L. Gay-Lussac přišel na další zákon chemického slučování. Zjistil, že slučují-li se některé plyny, vstupují do reakce vždy jejich stejné nebo násobné objemy. To se dá vysvětlit tak, že ve stejných objemech různých plynů je stejný počet atomů. Amadeo Avogadro 1776 – 1856 Ve zbylých případech se objem plynů mění – např. při slučování jednoho dílu chloru a jednoho dílu vodíku vznikají dva díly chlorovodíku. Tuto nejasnost vysvětlil italský fyzik a chemik Avogadro zákonem který říká, že ve stejných objemech různých plynů je při stejném tlaku a teplotě vždy stejný počet molekul. Přitom předpokládal, že některé prvky v plynném stavu nejsou jednoatomové, ale jsou tvořeny molekulami (např. H2 či Cl2, které pak dají vzniknout dvěma molekulám HCl).

discovery of electron

Objev elektronu Katodové paprsky

Objev elektronu Joseph J. Thompson 1856 - 1940 J. J. Thompson roku 1897 vysvětlil katodové paprsky pomocí proudu nabitých částic, jakýchsi „částeček elektřiny“. Pro tyto částice se ujal název elektron. Ze zakřivení drah elektronů v magnetickém poli určil Thompson měrný náboj elektronu, tj. veličinu e/me . Americký fyzik R. Millikan prováděl v roce 1910 řadu pokusů k určení hodnoty elektrického náboje elektronu, tzv. elementárního náboje. Spolu s hodnotou e/m pak bylo možné usoudit na hmotnost elektronu. Robert Millikan 1868 - 1953 J. J. Thompson je pokládán za objevitele první elementární částice, elektronu. Spolu s Millikanem určili základní vlastnosti této částice – náboj a hmotnost.

Měření e/m R B e- U

Měření e/m

Millikanův experiment Olejové kapičky Nabité desky Fe Fg

Millikanův experiment

Objev atomového jádra Ernest Rutherford 1871 - 1937 Poznatek, že elektrony vyletují z atomů vyvrátil odvěkou představu o nedělitelnosti a nastolil otázku jejich struktury. J. J. Thompson se domníval, že kladný náboj je rovnoměrně rozložen v celém objemu atomu a elektrony v něm vězí jako rozinky v pudingu. e- Tuto hypotézu vyvrátili roku 1911 E. Rutherford a jeho spolupracovníci ve slavném experimentu rozptylu záření α na tenké zlaté fólii.

Rutherfordův experiment - aninace Rutherford - animace

Objev atomového jádra Rozptýlené α částice Proud α částic Scintilátor Tenká zlatá fólie Lehce rozbíhavý kužel Předpověď výsledku Rutherfordova pokusu, kdyby platila Thompsonova rozinková teorie stavby atomu.

Rutherfordův pokus Atom se skládá z malého, kladně nabitého jádra, ve kterém je soustředěna téměř veškerá hmotnost atomu, zabírá však minimální zlomek jeho celkového objemu. Kladný náboj jádra a záporný náboj elektronového obalu se navzájem ruší.

Planetární model atomu V návaznosti na Rutherfordův pokus byl atom popisován pomocí planetárního modelu. Jádro zde fungovalo jako slunce, kolem nějž po kruhových orbitách létaly elektrony. Jejich přitažlivost ovšem nebyla dána gravitační interakcí, nýbrž elektromagnetickou. Dle klasické elektrodynamiky nabitá částice, která se pohybuje se zrychlením, vyzařuje elektromagnetické vlny a ztrácí tak energii. Klasická fyzika tedy předpovídala, že elektrony musí velmi rychle ztratit pohybovou energii a spadnout na jádro. Tento paradox nebylo možno vysvětlit bez pomocí kvantové teorie.

Hlavní nedostatky Rutherfordova modelu atomu

Spektra atomů - emisní, absorpční Spektrum záření atomů Spektra atomů - emisní, absorpční 1802 – William Wollaston – tmavé čáry ve slunečním spektru 1814 – Joseph Fraunhofer – detailní popis „Fraunhoferových čar“ 1859 – Kirchhoff, Bunsen – čáry odpovídají čarám v absorpčním spektru prvků 1885 – Johann Balmer – studium emisních spekter – hlavně vodíku

Spektra některých prvků

Balmer zjistil, že pro vlnové délky čar ve spektru vodíku platí empirický vztah nebo pro frekvenci Rf = 3,29.1015 Hz

Bohrův model atomu - 1913 Niels Bohr 1885 - 1962

Poloměr Bohrovy dráhy není libovolný, ale musí splnit podmínku

Pro celkovou energii elektronu na n- té energetické hladině musí platit

Bohrův model atomu Další zajímavosti najdete zde Kvantový model atomu - animace

FRANCKŮV - HERTZŮV POKUS ANIMACE Triodu T plnili Franck a Hertz parami různých prvků. Ze žhavené katody K vystupují elektrony a jsou unášeny elektrickým polem ke kladně nabité mřížce M. Potenciálový rozdíl mezi katodou a mřížkou označme symbolem V. Na své cestě se elektrony srážejí s atomy par vyplňujících vnitřní prostor triody, přičemž tyto srážky mohou být jak pružné, tak i nepružné. Slabé brzdicí napětí mezi mřížkou a anodou dále způsobí, že jen elektrony s jistou minimální kinetickou energií dopadnou na anodu a přispějí k proudu tekoucímu galvanometrem A. Elektrony s menší kinetickou energií ke katodě nedospějí a jsou odvedeny mřížkovou větví obvodu.

VÝSLEDKY EXPERIMENTU Franck a Hertz měřili v takto sestaveném obvodu závislost proudu I tekoucího galvanometrem A na napětí V mezi katodou a mřížkou. Získali tak voltampérové charakteristiky podobné té, kterou pro ilustraci uvádíme na následujícím obrázku.Franckův - Hertzův pokus - voltampérová charakteristika

Hlavní kvantové číslo n Udává celkovou energii elektronu v daném kvantovém stavu pro atom vodíku = -13,6 eV n = 1, 2, 3, 4, ………… celá čísla energie elektronu se mění nespojitě - skokem

Vedlejší kvantové číslo l hodnota  l  určuje dovolené hodnoty velikosti orbitálního momentu hybnosti nabývá hodnot 0, 1, 2, 3,……(n-1) l = 0, 1, 2, 3, 4,… se běžně nahrazují symboly s, p, d, f, g,... udává tvar orbitalu

Magnetické kvantové číslo m - souvisí s kvantováním magnetického momentu elektronu - nabývá hodnot -l …… 0, ……+l celá čísla - udává prostorovou orientaci orbitalu Spinové kvantové číslo s (ms) souvisí s vlastním momentem hybnosti elektronu nabývá hodnot +1/2 - 1/2

Pauliho vylučovací princip - žádné dva elektrony v atomu nemohou mít stejná všechna kvantová čísla - v jednom kvantovém stavu (určeném čísly n,l, m) se mohou nacházet maximálně 2 elektrony

Povolené kvantové stavy

Tvar 1s orbitalu

Tvary 2p orbitalů

Tvary 3 d orbitalů

Kvantový model atomu - animace