Gymnázium Jiřího Ortena KUTNÁ HORA

Slides:



Advertisements
Podobné prezentace
Lineární perspektiva užívá místo S2 název H
Advertisements

Gymnázium Jiřího Ortena KUTNÁ HORA
VY_32_INOVACE_KGE.4.55 Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Tematický celek: Konstruktivní geometrie 4.ročníku Cílová skupina:
z Axonometrie Z O Y X x y Zobrazení útvaru ležícího v půdorysně
Zářezová metoda Kosoúhlé promítání
Otáčení roviny.
Autor: Mgr. Jana Pavlůsková Datum: duben 2012 Ročník: 8. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Gymnázium Jiřího Ortena KUTNÁ HORA
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tematický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Gymnázium Jiřího Ortena KUTNÁ HORA
Otočení roviny do průmětny
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Lekce č. 5 Kosoúhlé promítání Axonometrie Průsečík přímky s rovinou.
Zářezová metoda Kolmé průměty objektu  Axonometrie objektu
Koule a kulová plocha v KP
Gymnázium Jiřího Ortena KUTNÁ HORA
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Rovnoběžné promítání. Nevlastní útvary. Osová afinita v rovině.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Gymnázium Jiřího Ortena KUTNÁ HORA
ZÁKLADY DESKRIPTIVNÍ GEOMETRIE.
Střední škola stavební Jihlava Deskriptivní geometrie 2 Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky 13. Průnik.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Středové promítání na jednu průmětnu
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Střední škola stavební Jihlava
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Gymnázium Jiřího Ortena KUTNÁ HORA
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Deskriptivní geometrie DG/PÚPN
Úsečka Ve skutečné velikosti se úsečka zobrazí jen tehdy, leží-li v rovině rovnoběžné ( totožné) s průmětnou p nebo n. To znamená, že pokud je půdorys.
Pravoúhlá axonometrie
Kosoúhlé promítání.
Kótované promítání – zobrazení roviny
4.OBECNÁ AXONOMETRIE A KOSOÚHLÉ PROMÍTÁNÍ
VY_32_INOVACE_KGE.4.52 Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Tematický celek: Konstruktivní geometrie 4.ročníku Cílová skupina:
Autor: Mgr. Jana Pavlůsková Datum: duben 2012 Ročník: 8. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tématický celek: Výrazy, rovnice, nerovnice Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory:
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Střední škola stavební Jihlava
Otáčení roviny - procvičení
Střední škola stavební Jihlava
Střední škola stavební Jihlava
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Cílová skupina: 1. ročník (kvinta) gymnázia Oblast podpory: IV/2 Inovace a zkvalitnění výuky směřující.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím.
VY_32_INOVACE_33-04 IV. Zobrazení úsečky.
Přednáška č. 4 Kosoúhlé promítání Opakování Mongeova promítání.
Gymnázium Jiřího Ortena KUTNÁ HORA
Název školy: Gymnázium Zlín - Lesní čtvrť Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Rozvoj žákovských kompetencí pro 21. století Název šablony:
Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Matematika Tematická oblast: Rovnice, nerovnice, výrazy Cílová skupina: 1. ročník (kvinta) gymnázia Oblast.
Gymnázium Jiřího Ortena KUTNÁ HORA
Skutečná velikost úsečky
Zobrazení přímky a roviny
Axonometrie - Konstrukce tělesa OB21-OP-STROJ-DEG-MAT-L
Matematika Parabola.
Skutečná velikost úsečky
Gymnázium J. V. Jirsíka, F. Šrámka 23, České Budějovice
Vybrané promítací metody
Konstruktivní úlohy na rotačních plochách
Autor: Mgr. Lenka Doušová
Autor: Mgr. Lenka Doušová
Kolmost přímky a roviny
Analytický geometrie kvadratických útvarů
Gymnázium J. V. Jirsíka, F. Šrámka 23, České Budějovice
Transkript prezentace:

Gymnázium Jiřího Ortena KUTNÁ HORA VY_32_INOVACE_KGE.4.60 Gymnázium Jiřího Ortena KUTNÁ HORA Předmět: Konstruktivní geometrie Tematický celek: Konstruktivní geometrie 4.ročníku Cílová skupina: 4. ročník (oktáva) gymnázia Oblast podpory: III/2 Inovace výuky prostřednictvím ICT Autor: Mgr. Jitka Křičková Téma: Pravoúhlá axonometrie – kružnice v průmětně Datum vytvoření: 24.2.2013

Anotace: VY_32_INOVACE_KGE.4.60 Materiál je určen pro jednu vyučovací hodinu. Obsahuje dvě úlohy – konstrukci kružnice ležící v půdorysně.

VY_32_INOVACE_KGE.4.60 V pravoúhlé axonometrii lze snadno sestrojit průmět kružnice dané středem a poloměrem, která leží v souřadnicové rovině nebo v rovině s ní rovnoběžné Axonometrickým průmětem kružnice, která leží v některé z pomocných průměten, je elipsa. Z průměrů kružnice se ve skutečné velikosti promítá ten, který je rovnoběžný s axonometrickou průmětnou, tzn. je rovnoběžný s příslušnou stranou axonometrického trojúhelníka.

Příklad: V pravoúhlé axonometrii dané osami a trojúhelníkem XYZ(8,7,6) zobrazte kružnici k(S[4,3,0], r=3) ležící v půdorysně π; střed S je dán svým axonometrickým průmětem S. IML2I=b VY_32_INOVACE_KGE.4.60

Úloha k samostatnému procvičení V axonometrii dané osovým křížem zobrazte kružnici k(S,r), která leží v půdorysně. XYZ(9,10,11), S[6,5,0], r=5 VY_32_INOVACE_KGE.4.60

VY_32_INOVACE_KGE.4.60 Byly použity vlastní materiály.