FIFEI-09 Termika a termodynamika I

Slides:



Advertisements
Podobné prezentace
15. Stavová rovnice ideálního plynu
Advertisements

Tomáš Prejzek ZŠ T. Stolzové Kostelec nad Labem Únor 2012
Co už známe? tání tuhnutí var a vypařování.
STRUKTURA A VLASTNOSTI plynného skupenství látek
Molekulová fyzika a termodynamika
Chemická termodynamika I
KALORIMETR.
Vnitřní energie, práce, teplo
Pevné látky a kapaliny.
18. Deformace pevného tělesa
IDEÁLNÍ PLYN Stavová rovnice.
Hodnocení elektráren - úkolem je porovnat jednotlivé elektrárny mezi sebou E1 P pE1 P E1 vliv na ŽP E2 P pE2 P E2 vliv na ŽP.
Entropie v nerovnovážných soustavách
Doc. Ing. Zdeněk KADLEC, Ph.D.
Teplota Termodynamická (absolutní) teplota, T
FIFEI-12 Termika a termodynamika IV Doc. Miloš Steinhart, UPCE 06.
ROVNOVÁŽNÝ STAV, VRATNÝ DĚJ, TEPELNÁ ROVNOVÁHA, TEPLOTA A JEJÍ MĚŘENÍ
TERMODYNAMICKÁ TEPLOTA
Molekulová fyzika a termika
Dostupné z Metodického portálu ISSN: 1802–4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Ohmův zákon, Kirchhoffovy zákony a jejich praktické aplikace
Kapaliny.
Tepelné vlastnosti dřeva
FI-13 Termika a termodynamika I
Druhy teploměrů Prezentace do fyziky.
potřebné ke změně teploty nebo přeměně skupenství látky
Ideální plyn Michaela Franková.
Vojtěch Škvor, Robert Kočí, Zuzana Podhorská, Lucie Syslová
Teplo Ing. Radek Pavela.
TÁNÍ A TUHNUTÍ.
Tato prezentace byla vytvořena
Struktura a vlastnosti kapalin
Šablona:III/2č. materiálu: VY_32_INOVACE_FYZ_370 Jméno autora:Mgr. Alena Krejčíková Třída/ročník:1. ročník Datum vytvoření: Výukový materiál.
Strojní mechanika TERMOMECHANIKA Autor: Ing. Jaroslav Kolář
-14- Vnitřní energie, práce a teplo, 1. td. Zákon Jan Klíma
Digitální učební materiál
Chemie anorganických materiálů I.
Elektrické teplo - základy Teplo 1 Elektrické teplo - základy.
Název materiálu: TEPLO – výklad učiva.
FFZS-06 Termika a termodynamika
Fyzika 6. ročník Teplota Anotace
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
okolí systém izolovaný Podle komunikace s okolím: 1.
METROLOGIE TEPLOTY P9.
FI-15 Termika a termodynamika III
Gymnázium a obchodní akademie Chodov Smetanova 738, Chodov Číslo projektu: CZ.1.07/1.5.00/ Šablona: Inovace a zkvalitnění výuky prostřednictvím.
Struktura a vlastnosti plynů
Sytá pára. Var.
Výukový materiál zpracovaný v rámci projektu
Změny skupenství Zpracovali: Radka Voříšková Petra Rýznarová
Škola: Gymnázium, Brno, Slovanské náměstí 7
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Teplota
Vnitřní energie, teplo, teplota. Celková energie soustavy Kinetická energie – makroskopický pohyb Potenciální energie – vzájemné působení těles (makroskopicky)
Výukový materiál zpracovaný v rámci projektu. Registrační číslo projektu: CZ 1.07/1.4.00/ Šablona: 32 Sada: F6/18 Předmět: Fyzika Ročník: 6. Jméno.
Fyzika pro lékařské a přírodovědné obory Ing. Petr Vácha ZS – Termika, molekulová fyzika.
Joulův-Thomsonův jev volná adiabatická expanze  nevratný proces (vzroste entropie) ideální plyn: teplota se nezmění a bude platit: p1p1 V1V1 p 2 < p 1.
Vytápění Teplota. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo materiálu:
Radovan Plocek 8.A. Stavové veličiny Izolovaná soustava Rovnovážný stav Termodynamická teplota Teplota plynu z hlediska mol. fyziky Teplotní stupnice.
Molekulová fyzika 2. Sada pomocných snímků „Teplota“
7. STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK A KAPALIN
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Základní pojmy.
-14- Vnitřní energie, práce a teplo, 1. td. Zákon Jan Klíma
Přípravný kurz Jan Zeman
Změny skupenství látek
Výpisky z fyziky − 6. ročník
Vytápění Teplo.
ŠKOLA: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace
TERMODYNAMICKÁ TEPLOTA
Izotermický a izochorický děj s ideálním plynem
Transkript prezentace:

FIFEI-09 Termika a termodynamika I http://stein.upce.cz/msfei14.html http://stein.upce.cz/fei/fIfei_09.html Doc. Miloš Steinhart, UPCE 06 036, ext. 6029 29. 4. 2014

Hlavní body Úvod do termiky a termodynamiky, teplo a teplota Termika Jednotky teploty Tepelná roztažnost pevných látek, kapalin a plynů. Tepelná roztažnost a rozpínavost plynů. Absolutní teplotní škála. Měření teploty. Kalorimetrie – měrná a skupenská tepla Vedení tepla 29. 4. 2014

Úvod do termiky a termodynamiky I Termika se zabývá zvláště definicí teplotní škály a měřením teploty, účinky změny teploty na látky, kalorimetrií a vedením tepla. Termodynamika se zabývá zejména přeměnou tepelné energie na jiné formy, podmínkami rovnováhy systémů a ději, které se odehrávají uvnitř i vzhledem k okolí. Hranice termiky a termodynamiky nejsou ostré. Teplota je tepelný stav systému, hmoty. Teplo je forma energie. Její existence úzce souvisí s přenosem energie mezi tělesy o rozdílných teplotách. Pojmy teplota a teplo se často nesprávně zaměňují! 29. 4. 2014

Úvod do termiky a termodynamiky II Oba obory lze vykládat : Fenomenologicky – užíváme makroskopicky měřitelných veličin a nezabýváme se mikroskopickou podstatou. Na základě zkušeností lze dospět k velmi obecným závěrům, bez předpokladů o struktuře. Atomisticky – jevy vysvětlujeme jako následek existence mikroskopických částic. Veličiny získáváme statistickým středováním jejich vlastností. 29. 4. 2014

Jednotky teploty I Na teplotě závisí většina makroskopických parametrů, například rozměry nebo vodivost. K měření teploty se nejvíce hodí ty, jejichž závislost je co nejednodušší, tedy (blízká) lineární. Předpokládejme, že takové měření lze uskutečnit. Pak definujeme empirickou teplotní stupnici (škálu) následujícím způsobem : určité hodnotě veličiny y(0) přiřadíme nulovou teplotu a jiné hodnotě y(n) přiřadíme teplotu n stupňů. 29. 4. 2014

Jednotky teploty II Do teplotní závislosti, v níž je již nultý bod implicitně obsažen : dosadíme druhý bod : vyjádříme škálovací faktor : čili : 29. 4. 2014

Jednotky teploty III Teplotu v této škále tedy vyjádříme : V Celsiově stupnici je považována: za 0° (stupňů) teplota mrznutí vody za 100° teplota varu vody obojí při tlaku 1.01325 105 Pa interval je rozdělen rovnoměrně 29. 4. 2014

Jednotky teploty IV V historii bylo definováno několik škál. Z nich, například Fahrenheitova se stále v některých zemích používá (USA) : Bez podrobností o měření teploty zatím předpokládejme, že teplotu lze měřit a budeme používat Celsiovu stupnici a stupni budeme říkat stupeň Celsia nebo Kelvin, ale nikoli stupeň Kelvina! 29. 4. 2014

Teplotní roztažnost kondenzovaného stavu Mikroskopicky lze roztažnost pevných látek a kapalin vysvětlit nesymetrií potenciálové jámy v blízkosti rovnovážné vzdálenosti částic. při nenulové teplotě se mohou částice vyskytovat v jakékoli vzdálenosti, která vyhovuje příslušné energii. protože odpudivá část jámy je typicky strmější střední vzdálenost částic se zvětšuje. potwell.jpg 29. 4. 2014

T roztažnost pevných látek I Mějme tyčinku, která má při referenční teplotě t0 = 0° C délku l0. Pro malé teploty je její prodloužení v prvním přiblížení úměrné teplotě původní délce : Relativní prodloužení (deformace) je úměrné teplotě: nebo  [K-1] je součinitel délkové teplotní roztažnosti. 29. 4. 2014

T roztažnost pevných látek II V širším rozmezí teplot a pro větší přesnost je nutno přidat kvadratický člen : 1 [K-1] je lineární a 2 [K-2] kvadratický součinitel délkové teplotní roztažnosti. 29. 4. 2014

T roztažnost pevných látek III Cu : 1 = 16.7 10-6 K-1, 2 = 0.9 10-9 K-2 ocel: 1 = 12 10-6 K-1 sklo : 1 = 9 10-6 K-1 sklo-Pyrex: 1 = 3 10-6 K-1 křemen : 1 = 0.5 10-6 K-1 Ni(36)Fe : 1 = 0.9 10-6 K-1 1, který určuje hlavní efekt, je řádově u kovů 10-5 K-1 nekovů 10-6 K-1 29. 4. 2014

T roztažnost pevných látek IV Srovnejme teplotní roztažení : a Hookův zákon : Je patrné, že teplotní zatížení může vést k velkému mechanickému namáhání. S touto skutečností se musí počítat při konstrukci strojů a staveb : 29. 4. 2014

T roztažnost pevných látek V Objemová roztažnost : Pro typické hodnoty jsou druhá a vyšší mocniny  zanedbatelné a tedy platí : Koeficient objemové roztažnosti  je přibližně trojnásobek koeficientu délkové roztažnosti . Dutina se roztahuje stejně jako kdyby byla vyplněna materiálem svých stěn. 29. 4. 2014

T roztažnost pevných látek VI Pro teplotní změnu hustoty nalezneme, za předpokladu, že se hmotnost s teplotou nemění a zanedbání veličin druhého řádu : 29. 4. 2014

Teplotní roztažnost kapalin I Při popisu objemové roztažnosti kapalin se v prvním přiblížení postupuje jako u pevných látek : Zde koeficient objemové roztažnosti (t) je řádově 100 x větší než u pevných látek a závisí na teplotě, takže vztah funguje jen ve velmi malém teplotním intervalu. 29. 4. 2014

Teplotní roztažnost kapalin II Přesnější popis objemové roztažnosti kapalin vyžaduje použití kubického polynomu : a b c Hg: 1.82 10-4 7.8 10-9 0 EtOH: 7.45 10-4 1.85 10-6 7.3 10-9 H2O: -6.43 10-5 8.51 10-6 -6.8 10-8 29. 4. 2014

Teplotní roztažnost kapalin III roztažnost Hg je malá, ale téměř lineární roztažnost etanolu je nelineární, ale velká voda vykazuje anomálii a má největší hustotu při 4° C. Díky této jemnosti existuje život. pro (t) a pro hustotu  platí: 29. 4. 2014

Teplotní roztažnost plynů Za konstantního tlaku se objem plynů chová podle Gay-Lusacova zákona (1802-1808) : Je zajímavé, že pro většinu zředěných plynů je koeficient teplotní roztažnosti stejný : 29. 4. 2014

Teplotní rozpínavost plynů Při konstantním objemu se tlak plynů chová podle obdoby Gay-Lusacova zákona : Pro většinu zředěných plynů je koeficient teplotní rozpínavosti opět : 29. 4. 2014

Absolutní teplotní stupnice I Skutečnost, že koeficienty teplotní roztažnosti a rozpínavosti jsou stejné, znamená, že všechny izochory a izobary jsou přímky, které protínají osu teploty v hodnotě –273.15° C. Zavede-li se nula nové teplotní stupnice v tomto bodě a ponechá se velikost stupně, zjednodušují se lineární závislosti na přímé úměrnosti. Takto je definována absolutní teplotní škála. 29. 4. 2014

Absolutní teplotní stupnice II Jednotkou teploty je v absolutní škále je Kelvin [K]. Pozor neříká se stupeň Kelvina ale pouze Kelvin! Rovnice pro izochorický a izobarický děj se v absolutní teplotní škále zjednoduší na: 29. 4. 2014

Absolutní teplotní stupnice III Protože izochory a izobary prochází počátkem stačí pro jejich určení jeden kalibrační bod. Podle dohody se používá bod, ve kterém existuje voda současně ve všech třech skupenstvích, tzv. trojný bod vody : TT = 273.16 K  0.01° C 29. 4. 2014

Nultý princip termodynamiky. Měření teploty Měření teploty je založeno na nultém principu termodynamiky : Dají-li se do kontaktu dvě tělesa, dostanou se dříve nebo později do stavu termodynamické rovnováhy. Je-li těleso A v termodynamické rovnováze s tělesem B a současně s tělesem C, musí být i tělesa B a C ve vzájemné rovnováze. 29. 4. 2014

Měření teploty I Popsané teplotní chování látek se využívá k měření teploty. Hlavní požadavky na použitý efekt je, aby bylo měření : snadno realizovatelné citlivé lineární a neovlivňovalo významně měřenou teplotu Tyto požadavky jsou protichůdné a reálné látky je nemohou splňovat všechny současně. Zpravidla se volí kompromis, nejpřijatelnější v dané situaci. 29. 4. 2014

Měření teploty II Příkladem jsou kapalinové teploměry : roztažnost nádobky je vůči roztažnosti kapaliny zanedbatelná rtuťová stupnice je velmi blízká lineární lihové teploměry jsou nelineární, ale zase citlivější a méně nebezpečné. 29. 4. 2014

Měření teploty III Nejpřesnější, nejlineárnější, ale bohužel ne nejsnadněji realizovatelný je teploměr, v němž se měří rozpínavost zředěného plynu, takzvaný plynový teploměr : K nádobce s plynem je připojena trubice ve tvaru U a k ní ve spodní části nádobka se rtutí. Změnou její polohy lze měnit tlak, aby objem plynu byl konstantní. Teplota je úměrná tlaku, který lze snadno měřit. 29. 4. 2014

Kalorimetrie I Přijdou-li do tepelného kontaktu tělesa o různých teplotách dochází mezi nimi k výměně tepla (=energie), až dojdou k rovnováze, která při které budou mít obě stejnou teplotu – nultý princip TD přitom původně teplejší těleso tepelnou energii ztrácí a chladnější ji získává. Je-li systém dobře tepelně izolován, celková energie se zachovává. 29. 4. 2014

Kalorimetrie II Množství tepla potřebné k ohřátí tělesa o jeden stupeň se nazývá jeho tepelná kapacita [J K-1]. U homogenních látek je zvykem tuto veličinu ještě vztáhnout na jednotku hmotnosti, takže se definuje měrné teplo [J kg-1 K-1]. Měrné teplo je schopnost akumulovat tepelnou energii a hluboce souvisí se strukturou (počtem stupňů volnosti) dané látky a obecně závisí na teplotě. 29. 4. 2014

Kalorimetrie III Látky obvykle mohou existovat ve několika skupenstvích. Změna skupenství se odehrává při určité teplotě a je spojená s výměnou takzvaného skupenského tepla [J kg-1]. To je energie potřebná k přeměně 1 kg látky z jednoho skupenství do druhého. Dvoufázového systému, v němž dochází ke skupenské přeměně se využívá jako teplotní reference. Například tajícího ledu ve vodě. 29. 4. 2014

Kalorimetrie IV Ve směru tání a vypařování je třeba energii dodat. Tento proces je tzv. endotermický. Ve směru kondenzace a tuhnutí (krystalizace) je nutné naopak energii odebrat. Jedná se o tzv. endotermický proces. Ke studiu tepelných výměn, tedy měrných a skupenských tepel a fázových přechodů obecně slouží kalorimetry. musí to být dobře izolované nádoby a musí být známa jejich tepelná kapacita 29. 4. 2014

Kalorimetrie V Mějme v kalorimetru o kapacitě K, m2 látky o měrném teple c2, při teplotě t2. Přimíchejme m1 látky o měrném teple c1, a teplotě t1 ( > t2). Výsledná teplota bude t. Potom bude teplo, které odevzdala přimíchaná látka rovno teplu které přijal kalorimetr a původní látka: 29. 4. 2014

Vedení tepla I Schopnost vést teplo je dána plochou kontaktu tepelným spádem tloušťkou vrstvy tepelnou vodivostí k [W m-1 K-1] materiálu Pro přenášený tepelný výkon platí : 29. 4. 2014

Vedení tepla II Geometrické a materiálové vlastnosti lze sloučit do parametru - tepelného odporu R. Při skládání materiálů se tepelné odpory chovají obdobně jako elektrické rezistance a lze využít stejného matematického aparátu. Mějme dva materiály a předpokládejme teplotu Tx na jejich rozhraní. Tok musí být společný : 29. 4. 2014

Vedení tepla III Z rovnice : Platí : A tedy : Kde : R12 = R1 + R2 29. 4. 2014

Vedení tepla IV Vytváříme-li tepelné spojení mezi dvěma tělesy z několika vrstev, je celkový tepelný odpor součtem tepelných odporů jednotlivých vrstev. Jedná se totiž o obdobu sériového spojení, protože celkový tok energie prochází každou vrstvou. Kdybychom změnili pořadí vrstev, změnily by se teploty na jejich rozhraních, ale celkový tepelný odpor by zůstal stejný. 29. 4. 2014

Absolutní teplotní stupnice I Mějme vlastnost y(t), která se chová podle Gay-Lusacova zákona, podobně jako objem nebo tlak : y0 je její hodnota při 0°C a 0 její lineární teplotní koeficient : Zde T0 = 273.15 K.

Absolutní teplotní stupnice II Nyní hledejme škálu, ve které platí přímá úměra : Tedy : Rovnici lze ještě přepsat, aby měla názornější geometrickou interpretaci : ^