Pravděpodobnost. Náhodný pokus.

Slides:



Advertisements
Podobné prezentace
Základní typy rozdělení pravděpodobnosti diskrétní náhodné veličiny
Advertisements

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
ZÁKLADY PRAVDĚPODOBNOSTI
Pravděpodobnost a matematická statistika I.
Kombinatorika a klasická pravděpodobnost
Vybraná rozdělení diskrétní náhodné veličiny
PERMUTACE a VARIACE 2.1 Permutace 2.2 Variace bez opakování
Pravděpodobnost 11  Zásobník úloh  Opakování, procvičení VY_32_INOVACE_21-12.
Zabývá se různými způsoby výběru prvků z daného souboru.
PERMUTACE a VARIACE 2.1 Permutace 2.2 Variace bez opakování
Teorie pravděpodobnosti
Zdroj: Kombinatorika Zdroj:
Bayesův teorém – cesta k lepší náladě
Pravděpodobnost - úvod
VY_32_INOVACE_21-14 Test č.2 Podmíněná pravděpodobnost Nezávislé jevy.
Pravděpodobnost a statistika opakování základních pojmů
Generování náhodných veličin (1) Diskrétní rozdělení
Náhodná veličina.
VY_32_INOVACE_21-01 PRAVDĚPODOBNOST 1 Úvod, základní pojmy.
25. října 2004Statistika (D360P03Z) 4. předn.1 Statistika (D360P03Z) akademický rok 2004/2005 doc. RNDr. Karel Zvára, CSc. KPMS MFF UK
Základy informatiky přednášky Entropie.
VY_32_INOVACE_21-13 Pravděpodobnost 12
Náhodná proměnná Rozdělení.
Binomická distribuce Při zjišťování p je nutné znát:  a) celkový počet možných jednoduchých jevů  b) počet jednoduchých jevů který spadá do jevu/třídy.
8. listopadu 2004Statistika (D360P03Z) 6. předn.1 chování výběrového průměru nechť X 1, X 2,…,X n jsou nezávislé náhodné veličiny s libovolným rozdělením.
Matematický aparát v teorii informace Základy teorie pravděpodobnosti
VY_32_INOVACE_21-08 Pravděpodobnost 8 Podmíněná pravděpodobnost – II.
VY_32_INOVACE_21-10 TEST č. 1.
Pravděpodobnost 10 Binomické rozdělení pravděpodobnosti neboli
Nechť (, , P) je pravděpodobnostní prostor:
Pravděpodobnost a genetická prognóza
Náhodný jev A E na statistickém experimentu E - je určen vybranou množinou výsledků experimentu: výsledku experimentu lze přiřadit číslo, náhodnou proměnnou.
Pravděpodobnost (pracovní verze). 1. Definice pojmů Jednoduchý/náhodný pokus (simple experiment)  Akt vedoucí k jednomu výsledku - např. hod kostkou,
Nezávislé pokusy.
STATISTIKA (PRAVDĚPODOBNOST A STATISTIKA)
POČET PRAVDĚPODOBNOSTI
Funkce více proměnných.
PRAVDĚPODOBNOST NEZÁVISLÉ JEVY Jevy A,B nazýváme nezávislými, jestliže
ZÁKLADY TEORIE PRAVDĚPODOBNOSTI
K OMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Úvod do pravděpodobnosti VY_32_INOVACE_M4r0113 Mgr. Jakub Němec.
Základy zpracování geologických dat
Množiny.
Přírodní vědy aktivně a interaktivně
Pravděpodobnost 7  Podmíněná pravděpodobnost. Definice  Podmíněná pravděpodobnost náhodného jevu A je pravděpodobnost jevu A, ale v závislosti na dalším.
Kombinatorika, pravděpodobnost, statistika
2. Vybrané základní pojmy matematické statistiky
Základy matematické statistiky. Nechť je dána náhodná veličina X (“věk žadatele o hypotéku“) X je definována rozdělením pravděpodobností, s nimiž nastanou.
SZŠ a VOŠZ Zlín ® předkládá presentaci Kabinet MAT Mgr. Vladimír Pančocha.
Kombinatorika, pravděpodobnost, statistika
K OMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Variace s opakováním VY_32_INOVACE_M4r0110 Mgr. Jakub Němec.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky 1.
Příklad 1 Urči pravděpodobnost získání výhry ve Sportce pro 4 uhodnutá čísla. Řešení: Ve Sportce se losuje 6 výherních čísel ze 49 čísel v osudí. Výherní.
Náhodná veličina. Nechť (, , P) je pravděpodobnostní prostor:
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Vladimír Mikulík. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Vladimír Mikulík. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Vladimír Mikulík. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Pravděpodobnost Přednáška č.2. Deterministický a náhodný děj Každý děj probíhá za uskutečnění jistého souboru podmínek Deterministický děj-děj, ve kterém.
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM
Podmíněné pravděpodobnosti
Pravděpodobnost. Náhodný pokus.
Některá rozdělení náhodných veličin
Náhodná veličina.
Matematika Pravděpodobnost
Výukový materiál zpracován v rámci projektu
ČÍSLO PROJEKTU ČÍSLO MATERIÁLU NÁZEV ŠKOLY AUTOR TÉMATICKÝ CELEK
Pravděpodobnost. Náhodný pokus.
Výukový materiál zpracován v rámci projektu EU peníze školám
Vzdělávání pro konkurenceschopnost
Kombinatorika. Základní pojmy. Pravidla pro práci se skupinou:
Provozováno Výzkumným ústavem pedagogickým v Praze.
Transkript prezentace:

Pravděpodobnost. Náhodný pokus. Při každém opakování pokusu dostáváme jiné výsledky. V praxi nelze zaručit totožné podmínky při opakování pokusu. V praxi je každý pokus náhodný ve výše uvedeném smyslu. Základní prostor. Při každém opakování pokusu dostáváme jiné výsledky, Avšak množina výsledků je známa. Množina možných výsledků je základní prostor . Elementární jevy. Prvky základního prostoru jsou elementární jevy. (E1, E2, …) Náhodný jev. Každá podmnožina náhodného prostoru je náhodný jev. (A, B, …) Prázdná podmnožina  označuje jev nemožný, Množina  označuje jev jistý.

Příklad. Náhodný pokus : hod hrací kostkou Elementární jevy Ei: padne i, i = 1, 2, …,6 Nejsme schopni určit všechny Podmínky ovlivňující výsledek pokusu. Jsme schopni definovat všechny možné výsledky pokusu,  = {padne 1, … , padne 6} Příklady náhodných jevů: A Padne liché číslo A  , A = E1  E3  E5. B Padne číslo > 5, B  , B = E6. C Padne číslo > 6, C = . D padne číslo v intervalu <1, 6>, D = . Operace s náhodnými jevy.

 - algebra . Je to systém podmnožin základního prostoru , který splňuje Ai  , i = 1, 2, …   Ai   ( - aditivita) A     A      Axiomatická definice pravděpodobnosti. Nechť je dána  - algebra  nad základním prostorem . Pravděpodobností nazveme funkci P:   R s vlastnostmi P (A)  0 pro každý A   P() = 1, P() = 0 Ai  , i = 1, 2, … jsou neslučitelné jevy  P( Ai ) =  P(Ai) Trojice (, , P) se nazývá pravděpodobnostní prostor. Příklad. Dokažte, že platí pro každé A, B   P( A ) = 1- P(A) A  B  P(A) ≤ P(B) A  B  P(B \ A) = P(B) – P(A) P(A + B) = P(A) + P(B) – P(A  B)

P(AA) = P() = 1 = P(A) + P(A), protože A a A jsou neslučitelné. Odtud P(A) = 1 - P(A). P(B) = P(A) + P(B \ A)  P(A). Z (2) je P(B \ A) = P(B) – P(A). P(A + B) = P(B\ (A B)) + P(A\(A B)) + P(A  B) = P(B) + P(A) - P(A  B). Klasická definice pravděpodobnosti. Je zúžením axiomatické definice a pro nás dostačující. Předpokládá se, že základní prostor  je konečný, je tvořen n neslučitelnými elementárními jevy, všechny elementární jevy jsou stejně možné. Pak si lze představit rozklad libovolného jevu A na m-tici elementárních, neslučitelných, stejně možných jevů. P(A) = m / n, neboli P(A) = počet příznivých případů / počet všech případů. Příklad. Určete pravděpodobnost, že při hodu kostkou padne liché číslo. Elementární jevy příznivé jevu “padne liché číslo“ jsou 3 (padne 1,padne3, padne 5). m = 3, n = 6. Tedy P = 0.5.

Příklad. Mezi 10 barevnými koulemi je 6 modrých a 4 bílé. Vypočtěte pravděpodobnosti: náhodně vybraná koule je bílá tři náhodně vybrané koule jsou modré 2 náhodně vybrané koule jsou různé barvy. Řešení. všechny koule mají stejnou pravděpodobnost být taženy. P = 0.4. počet všech možných výběrů je . Počet jevů příznivých jevů je . Pravděpodobnost je tedy Počet všech dvojic je = 45. Počet různých dvojic je 6*4 = 24. Pravděpodobnost je tedy 24/45.

Příklad. V šestnácti lahvích jsou minerálky. Víme, že v 10 láhvích je Šaratice a v 6 lahvích je Vincentka. Jaká je pravděpodobnost, že mezi 4 náhodně vybranými lahvemi jsou 2 Šaratice a 2 Vincentky. N = 16 (počet všech lahví) V = 10 (počet lahví Šaratice) N-V = 6 (počet lahví Vincentka) n = 4 (počet náhodně vybraných lahví) k = 2 (výběr Šaratice) n - k = 2 (výběr Vincentka)

Další definice pravděpodobnosti. geometrická definice.  je oblast (v rovině, v prostoru, …), A je její podmnožina. Definuje se pravděpodobnost, že pro x   platí, že x  A. P = “velikost“ A / “velikost“ . statistická definice. Nastane-li v n pokusech jev A mn-krát, pak pravděpodobnost jevu A definujeme Podmíněná pravděpodobnost, nezávislé jevy. Pravděpodobnost jevu A za předpokladu, že nastal jev B je podmíněná pravděpodobnost jevu A a značí se P (A/B). Platí P (A/B) = P(A B) / P(B). Jevy A a B jsou nezávislé právě, když P(A B) = P(A)P(B).

Příklad. Máme krabici se třemi bílými a dvěma černými koulemi. Vytáhneme postupně dvě koule (první nevracíme zpět). Určete pravděpodobnost toho, že v druhém tahu vytáhneme bílou kouli za předpokladu, že v prvním tahu byla vytažena černá koule. A … v 2. tahu tažena bílá koule B … v 1. tahu tažena černá koule Možnosti. B1B2, B1B3, B2B1, B2B3, B3B1, B3B2, B1 (černá 1,2), B2 (černá 1,2), bílá 3 (černá 1,2), Č1 (bílá 1,2,3), Č2 (bílá 1,2,3,). Č1Č2, Č2Č1 Celkem 20 možností. Černá v 1. tahu: 8 možnosti, P(B) = 8/20 = 0.4 (Nebo také 2/5 = 0.4.) Černá v 1. tahu a současně bílá v 2. tahu představuje 6 možností, P(A  B) = 6/20 = 0.3. P(A/B) = 6/8 = 3/4.

Příklad. Dokažte Z definice podmíněné pravděpodobnosti plyne, že P(A  B) = P(A / B)P(A) = P(B / A)P(B). Úplná pravděpodobnost. Nechť je dán úplný systém vzájemně neslučitelných jevů H1, H2, ..., Hn a libovolný jev A, který může nastat pouze současně s některým z jevů Hi. Pro pravděpodobnost jevu A platí: P(A) = P(H1).P(A/H1)+P(H2).P(A/H2)+...+P(Hn).P(A/Hn)

Příklad. V obchodě jsou tři pokladny, na nichž dojde k chybě v účtování s pravděpodobností: 0,1; 0,05 a 0,2, při čemž z hlediska umístění pokladen v obchodě jsou pravděpodobnosti odbavení pokladnami 0,3; 0,25 a 0,45. Jaká je pravděpodobnost, že osoba opouštějící obchod má chybný účet? jev A: došlo k chybě v účtování jev Hi: odbavení i-tou pokladnou jev A je možno vyjádřit: A = (A  H1)  (A  H2)  (A  H3) (zákazník má chybný účet, při čemž projde první pokladnou nebo má chybný účet po odbavení druhou pokladnou nebo má chybný účet a prošel třetí pokladnou) Jevy A  H1, A  H2, A  H3 jsou vzájemně neslučitelné, proto: P(A) = P((A  H1)  (A  H2)  (A  H3)) = P(A  H1) + P(A  H2) + P(A  H3) = P(H1).P(A/H1) + P(H2).P(A/H2) + P(H3).P(A/H3) = 0,3.0,1 + 0,25.0,05 + 0,45.0,2 = 0,1325

Bayesova formule. Nechť je dán úplný systém vzájemně neslučitelných jevů H1, H2, ..., Hn a libovolný jev A, který může nastat jen současně s některým z jevů Hi. Pak pravděpodobnost, že nastane jev Hi, za předpokladu, že nastal jev A je: , kde Příklad. V obchodě jsou tři pokladny, na nichž dojde k chybě v účtování s pravděpodobností: 0,1; 0,05 a 0,2, při čemž z hlediska umístění pokladen v obchodě jsou pravděpodobnosti odbavení pokladnami 0,3; 0,25 a 0,45. Jaká je pravděpodobnost, že jsme byli u druhé pokladny, máme-li chybný účet? Hledáme tedy, čemu je rovno P(H2 / A).

Příklad. Házíme šestkrát kostkou. Vypočtěte pravděpodobnost, že z těchto šesti hodů padne šestka právě dvakrát. Aij, i = 1, …, 6, j = 1, …, 6, i  j: šestka padne v i-tém a v j-tém hodu Jedná se o nezávislé hody  jevy Aij jsou nezávislé. P(Aij) = (1/6)2(5/6)4 , tj. nezávisle na sobě 2x šestka a 4x něco jiného. Počet jevů Aij se rovná počtu způsobů, kolika lze umístit 2 šestky v 6 hodech, tj. Hledaná pravděpodobnost P = Příklad. Pravděpodobnost, že náhodně vybraný student bude znát učivo, je 0.005. Jaká je pravděpodobnost, že mezi dvaceti vybranými studenty bude: a) právě 5 znalých studentů b) nejvýše 2 znalí studenti a) b)

Příklad. V osudí jsou 2 bílé a 3 černé koule. Vypočtěte pravděpodobnost toho, že: a) vytáhneme 3 koule a budou 2 černé a 1 bílá b) vytáhneme bez vracení jako první černou kouli, pak bílou a nakonec černou. a) Nezávislé tahy b) Závislé tahy

Cvičení. 1. Mějme pět vstupenek po 100 Kč, tři vstupenky po 300 Kč a dvě vstupenky po 500 Kč. Vyberme náhodně tři vstupenky. Určete pravděpodobnost toho, že: a) alespoň dvě z těchto vstupenek mají stejnou hodnotu b) všechny tři vstupenky stojí dohromady 700 Kč. 2. Z celkové produkce závodu jsou 4% zmetků a z dobrých je 75% standardních. Určete pravděpodobnost, že náhodně vybraný výrobek je standardní. 3. Z výrobků určitého druhu dosahuje 95% předepsanou kvalitu. V určitém závodě, který vyrábí 80% celkové produkce, však předepsanou kvalitu má 98% výrobků. Mějme náhodně vybraný výrobek předepsané kvality. Jaká je pravděpodobnost, že byl vyroben ve výše uvedeném závodě? 4. Menza zakoupila 12 chladniček z 1. závodu, 20 z 2. závodu a 18 z 3. závodu. Pravděpodobnost, že chladnička je výborné jakosti, pochází-li z 1.závodu je 0,9, z 2.závodu 0,6 a z 3.závodu 0,9. Jaká je pravděpodobnost, že náhodně vybraná chladnička bude výborné jakosti? 5. Narozeninový problém I. Spočítejte pravděpodobnost, že žádní dva lidé z patnáctičlenné skupiny nemají narozeniny ve stejný den roku. Ignorujte 29.únor. 6. K síti je připojeno 14 nových a 6 starších počítačů. Pravděpodobnost bezchybného provozu u nových počítačů je 0.9, u starších 0.8. Jaká je pravděpodobnost, že a) student bude pracovat bez poruchy b) tento student pracuje u nového počítače?