Mechanické kmitání a vlnění

Slides:



Advertisements
Podobné prezentace
Mechanické vlnění Adrian Marek.
Advertisements

Kmitavý pohyb.
Vlnění © Petr Špína 2011 VY_32_INOVACE_B2 - 15
Elektromagnetické záření
KMT/FPV – Fyzika pro přírodní vědy
VLNĚNÍ V IZOTROPNÍM PROSTŘEDÍ
Mechanické kmitání a vlnění
Mechanické kmitání a vlnění
Jak si ulehčit představu o kmitání
Kmitavý pohyb 1 Jana Krčálová, 8.A.
Kmitavý pohyb 2 Jakub Báňa.
10. Přednáška – BOFYZ mechanické vlnění
Přednáška Vlny, zvuk.
3. KINEMATIKA (hmotný bod, vztažná soustava, polohový vektor, trajektorie, rychlost, zrychlení, druhy pohybů těles, pohyby rovnoměrné a rovnoměrně proměnné,
Jaká síla způsobuje harmonické kmitání?
24. ZÁKONY ZACHOVÁNÍ.
Jako se rychlost v průběhu kmitání mění
23. Mechanické vlnění Karel Koudela.
S ložené kmitání. vzniká, když  na mechanický oscilátor působí současně dvě síly  každá může vyvolat samostatný harmonický pohyb oscilátoru  a oba.
Chvění struny Veronika Kučerová.
FYZIKA PRO II. ROČNÍK GYMNÁZIA
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
ZRYCHLENÍ KMITAVÉHO POHYBU.  Vektor zrychlení a 0 rovnoměrného pohybu po kružnici směřuje do středu kružnice a má velikost:  Zrychlení a kmitavého pohybu.
K čemu může vést více vlnění
Odraz a lom na rovinném rozhraní Změna fáze a vlnové délky na rozhraní
SOUVISLOST KMITAVÉHO POHYBU S ROVNOMĚRNÝM POHYBEM PO KRUŽNICI
Vlny Přenos informace? HRW kap. 17, 18.
Geometrické znázornění kmitů Skládání kmitů 5.2 Vlnění Popis vlnění
INTERFERENCE VLNĚNÍ.
Kmitavý pohyb matematického kyvadla a pružiny
Škola: Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_FYZIKA1_14 Tematická.
Derivace –kmity a vlnění
SLOŽENÉ KMITÁNÍ.  Působí-li na mechanický oscilátor současně dvě síly, z nichž může každá vyvolat samostatný harmonický pohyb oscilátoru,
Kmitavý pohyb
Skládání kmitů.
KMITAVÝ POHYB KMITAVÝ POHYB  Kmitavý pohyb vznikne tehdy, pokud vychýlíme zavěšenou kuličku na pružině z rovnovážné polohy.  Rovnovážná poloha.
Kmity.
KMITÁNÍ A VLNĚNÍ, AKUSTIKA
Kmitání.
Mechanické kmitání Mgr. Kamil Kučera.
Mechanické kmitání Mechanické kmitání
Co je mechanické kmitání? 2. Jak se dělí mechanické kmitání? 3. Jak se vypočítá okamžitá výchylka? 4. Co je amplituda? 5. Jak se vypočítá.
Definice periodického pohybu: Periodický pohyb je pohyb, který se v pravidelných časových intervalech opakuje, např. písty spalovacího motoru,
Spřažená kyvadla.
Kmitání Kmitání (též oscilace nebo kmitavý děj) je změna, typicky v čase, nějaké veličiny vykazující opakování nebo tendenci k němu. Kmitající systém se.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu:CZ.1.07/1.5.00/ – Investice do vzdělání nesou nejvyšší.
Kmity, vlny, akustika Pavel KratochvílPlzeň, ZS Část I - Kmity.
Č.projektu : CZ.1.07/1.1.06/ Portál eVIM VLNĚNÍ Příčné a podélné.
Mechanické kmitání - test z teorie Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastFYZIKA - Kmitání, vlnění a elektřina.
Přenos informace? HRW2 kap. 16, 17 HRW kap. 17, 18.
Vlnění Obsah: ► Co je vlnění ► Popis vlnění ► Druhy vlnění
Rovnoměrný pohyb po kružnici a otáčivý pohyb
Mechanické kmitání, vlnění
Financováno z ESF a státního rozpočtu ČR.
Jaká síla způsobuje harmonické kmitání?
Kmity, vlny, akustika Část II - Vlny Pavel Kratochvíl Plzeň, ZS.
Financováno z ESF a státního rozpočtu ČR.
Mechanické vlnění Mgr. Kamil Kučera.
SŠ-COPT Uherský Brod Mgr. Jordánová Marcela 14. Mechanické vlnění
Část II – Skládání kmitů, vlny
ZVUK A JEHO VLASTNOSTI.
MECHANICKÉ VLNĚNÍ.
Kmity, vlny, akustika Část I – Kmity, vlny Pavel Kratochvíl
STOJATÉ VLNĚNÍ.
Kmitání Mgr. Antonín Procházka.
ROVNICE POSTUPNÉ MECHANICKÉ VLNY.
Vlny Přenos informace? HRW2 kap. 16, 17 HRW kap. 17, 18.
Mechanické kmitání, vlnění
Mechanické kmitání a vlnění
Transkript prezentace:

Mechanické kmitání a vlnění Kmitavý pohyb je takový pohyb, kdy se těleso nebo hmotný bod pohybuje po úsečce nebo kruhovém oblouku kolem rovnovážné polohy. Jestliže rovnovážnou polohou prochází v pravidelných časových intervalech, koná periodický kmitavý pohyb. Takový pohyb vykonává např. těleso zavěšené na pružině, písty v motoru apod. Rovnovážná poloha je taková poloha, kde má těleso nejmenší potenciální energii. Po skončení pohybu těleso zůstává v rovnovážné poloze, dokud na něj nezačne působit vnější síla. Zařízení, které kmitá bez vnějšího působení je mechanický oscilátor

Kinematika kmitavého pohybu Základní veličina, která popisuje periodické pohyby je perioda T. Je to čas, po kterém se periodický pohyb opakuje. [T] = s Počet opakování za jednotku času je frekvence (kmitočet) f. [f] = s–1 = Hz (hertz) Nejjednodušší kmitavý pohyb je harmonický pohyb. Je to takový pohyb, kdy je okamžitá výchylka z rovnovážné polohy závislá na funkci sinus. Grafem výchylky harmonického pohybu v závislosti na čase je sinusoida. Harmonický kmitavý pohyb je pravoúhlý průmět rovnoměrného pohybu po kružnici. Rovnovážná poloha je ve středu kružnice.

Při pohybu mechanického oscilátoru se okamžitá výchylka y periodicky mění a vzhledem k rovnovážné poloze nabývá kladných i záporných hodnot. V určitých časech dosahuje y největší kladné, popř. záporné hodnoty. Absolutní hodnota největší výchylky je amplituda výchylky ym. Když necháme obíhat hmotný bod po obvodu kružnice, jejíž střed umístíme do počátku soustavy souřadnic, jeho polohu popisuje vektor r, který má počáteční bod ve středu kružnice a koncový v hmotném bodě. Okamžitá výchylka y je pak průmět vektoru r do osy y. Když hmotný bod urazí na kružnici úhel  od osy x, platí pro y: ,

Rychlost a zrychlení harmonického pohybu Rychlost harmonického pohybu je změna výchylky za čas Z uvedeného vztahu vyplývá, že rychlost je derivace okamžité výchylky podle času Rychlost harmonického pohybu bude největší v rovnovážné poloze, v amplitudě výchylky bude nulová. Největší rychlost harmonického pohybu je amplituda rychlostí vm vm =   ym Podobně zrychlení harmonického pohybuj je změna rychlosti za čas Zrychlení je derivace rychlosti podle času

Zrychlení harmonického pohybu směřuje proti výchylce, největší je v amplitudě, nulové v rovnovážné poloze. Zrychlení harmonického pohybu je přímo úměrné okamžité výchylce a v každém okamžiku má opačný směr. Největší zrychlení harmonického pohybu je amplituda zrychlení am am = 2  ym Když harmonický pohyb nezačíná v rovnovážné poloze, musíme uvažovat, že v čase t = 0 už hmotný bod urazil úhel 0. 0 je počáteční fáze kmitavého pohybu. Pro okamžitou výchylku kmitavého pohybu s počáteční fází bude platit y = ym sin(t + 0)

Složené kmitání Když spojíme dva oscilátory vláknem, jehož střed zvýrazníme, a rozkmitáme oscilátory, uvidíme, že i střed vlákna kmitá. Jeho kmity odpovídají pohybu vzniklému složením kmitů obou oscilátorů. Vzniká složené kmitání. Stejně jako pro ostatní pohyby i pro kmitání platí princip superpozice: Jestliže hmotný bod koná současně několik harmonických kmitavých pohybů, téhož směru s okamžitými výchylkami y1, y2, …, yk, je okamžitá výchylka y výsledného kmitání y = y1 + y2 + … + yk Okamžité výchylky mohou mít kladnou i zápornou hodnotu. Skládají-li se harmonické pohyby se stejnou frekvencí:

Vlnění je jedním z nejrozšířenějších jevů Vlnění je jedním z nejrozšířenějších jevů. S vlněním se setkáváme v podobě zvuku, světla, rozhlasového či televizního vysílání atd. Vlnění může být mechanické – zvláštní druh pohybu, kdy HB kmitají kolem rovnovážných poloh a vzájemně si předávají energii, př. zvuk, vodní hladina, když do ní hodíme kámen elektromagnetické – energie, která se přenáší prostorem ve formě elektromagnetických vln, při elektromagnetickém vlnění se mění elektromagnetické pole, kmitají vektory E (intenzita el. pole) a B (mag. indukce), př. světlo, radiové vlny, UV záření Podmínky vzniku mechanické vlnění – zdrojem je mechanický oscilátor (kyvadlo, závaží na pružině, kmitající struna, blána, …), prostředí musí být pružné → musí mít dostatečný počet HB na jednotku délky. Ve vakuu nejsou molekuly a atomy (→ HB), proto se např. zvuk vakuem nešíří  elektromagnetické vlnění – zdrojem je elektromagnetický oscilátor (LC obvod, kmity molekul, změny elektromagnetického pole uvnitř atomů), pro šíření elektromagnetického vlnění jsou nutné jen změny elektrického a magnetického pole, proto se může šířit i vakuem.

MECHANICKÉ VLNĚNÍ Mechanické vlnění vzniká v látkách všech skupenství a jeho příčinou je existence vazebných sil mezi částicemi (atomy, molekulami) prostředí, kterým se vlnění šíří – může vzniknout jen v pružném prostředí – dostatečný počet HB na jednotku délky. Proto se zvuk šíří lépe ve vodě (kapalina) než ve vzduchu (plyn), a ještě lépe v oceli (pevná látka). Pro jednoduchost z tohoto prostředí vybereme řadu částic, které leží na jedné přímce. Jednotlivé částice jsou mechanické oscilátory navzájem spojené vazbou (znázorněna malou pružinou). Jestliže první kyvadlo vychýlíme a necháme jej volně kmitat, začnou postupně kmitat i ostatní kyvadla. Kmitání konstantní rychlostí v postupuje ve směru osy x. Vzniká postupné vlnění a rychlost v je rychlost šíření postupného vlnění. Je to vzdálenost, kterou vlnění urazí za 1 s. První kyvadlo vykonalo jeden kmit za dobu rovnou periodě kmitání T. Za tuto dobu se vlnění rozšířilo do vzdálenosti, kterou nazýváme vlnová délka λ. Vlnová délka  je vzdálenost dvou nejbližších bodů, které kmitají se stejnou fází; nebo vzdálenost, kterou vlnění urazí za jednu periodu. Veličina f je frekvence kmitání kyvadel (f = 1/T).

Druhy vlnění Vlnění, kdy hmotné body kmitají kolmo na směr šíření vlnění, je postupné vlnění příčné je charakteristické pro pružná pevná tělesa ve tvaru tyčí, vláken; pro vodní hladinu   příčné vlnění snadno vytvoříme na hadici, kterou volně položíme na podlahu a jeden její konec rozkmitáme elektromagnetické vlnění je vlnění příčné Větší fyzikální význam má však vlnění, při němž částice pružného tělesa kmitají ve směru, kterým vlnění postupuje. Takové vlnění nazýváme postupné vlnění podélné. vzniká v tělesech všech skupenství, tedy i v kapalinách a plynech postupným vlněním podélným se v pružných látkách šíří např. zvuk Toto vlnění charakterizuje zhušťování a zřeďování kmitajících bodů okolo míst, v nichž jsou okamžité výchylky kmitajících bodů nulové. Zhuštění, popř. zředění postupuje opět rychlostí v ve směru osy x. Jednotlivá zhuštění nebo zředění jsou navzájem vzdálená o vlnovou délku λ.

Rovnice postupného vlnění Postupné mechanické vlnění popíšeme vztahem, který umožňuje určit okamžitou výchylku v každém bodě řady, kterou se vlnění šíří. Tato výchylka závisí nejen na čase t, ale také na vzdálenosti x od zdroje vlnění (počátečního bodu řady). Koná-li počáteční bod Z řady (zdroj vlnění) harmonický kmitavý pohyb popsaný rovnicí pak kmitání libovolného bodu A vzdáleného o x od počátku bodové řady lze popsat rovnicí: úpravou dostaneme rovnici postupné vlny pro řadu bodů:

Interference vlnění je děj, při němž se v určitém bodě prostředí, kterým se šíří vlnění, skládají okamžité výchylky dvou a více vlnění. Interference vlnění může nastat, když se setkají dvě vlnění se stejnou frekvencí, stejným směrem šíření a na sobě nezávislým dráhovým posunem. Interferencí dvou stejných vlnění vzniká výsledné vlnění, jehož amplituda je největší v místech, v nichž se vlnění setkávají se stejnou fází (interferenční maximum) a nejmenší (popř. nulová) je v místech, v nichž se vlnění setkávají s opačnou fází (interferenční minimum). Při interferenci se skládají dvě vlnění: O tom, jak se vlnění složí, rozhoduje jejich fázový rozdíl Δφ:

Odraz vlnění v řadě bodů Výraz je dráhový rozdíl vlnění (dráhový posun). Interferenční maximum vznikne, když je dráhový rozdíl roven sudému počtu půlvln Interferující vlnění se setkávají v každém bodě se stejnou fází, proto výsledná amplituda výchylky je rovna součtu jednotlivých amplitud. Interferenční minimum vznikne, když je dráhový rozdíl roven lichému počtu půlvln Interferující vlnění se setkávají v každém bodě s opačnou fází, proto výsledná amplituda výchylky je rovna rozdílu jednotlivých amplitud. Při stejné amplitudě výchylek se obě vlnění zruší. Odraz vlnění v řadě bodů Na konci řady bodů, kterou se šíří postupné vlnění, nastává odraz vlnění. Na pevném konci se vlnění odráží s opačnou fází, na volném konci se odráží se stejnou fází.

Stojaté vlnění Když lano na jednom konci upevníme a na druhém jím začneme kmitat, v místě upevnění dojde k odrazu a dvě vlnění jdou proti sobě. Některé body budou kmitat, některé zůstanou na místě. Vznikne takovýto obrazec: V bodech, které kmitají nejvíce, jsou kmitny, v bodech, které nekmitají, jsou uzly. Dvě kmitny jsou od sebe vzdáleny λ/2, dva uzly jsou od sebe vzdáleny také λ/2, a kmitna s uzlem jsou od sebe vzdáleny λ/4. Poloha kmiten a uzlů stojatého vlnění se nemění. Huygensův princip: Každý bod vlnoplochy, do něhož dospělo vlnění v určitém okamžiku, můžeme pokládat za zdroj elementárního vlnění, které se z něho šíří v elementárních vlnoplochách. Vlnoplocha v dalším časovém okamžiku je vnější obalová plocha všech elementárních vlnoploch.  

Příklady Amplituda výchylky harmonického kmitavého pohybu závaží na pružině je 0,02 m a doba kmitu 1 s. Řešte tyto úkoly: a) Napište rovnici pro okamžitou výchylku. b) Jak dlouho trvá pohyb závaží z rovnovážné polohy do polohy krajní? c) Za jakou dobu vykoná závaží první polovinu této dráhy? d) Za jakou dobu vykoná druhou polovinu uvažované dráhy? Hmotný bod koná harmonický kmitavý pohyb s amplitudou výchylky 10 cm a s periodou 2 s. Určete výchylku, rychlost a zrychlení bodu v čase 0,2 s od začátku pohybu. Počáteční fáze kmitavého pohybu je rovna nule. Určete fázi hmotného bodu vykonávajícího harmonický kmitavý pohyb s periodou 0,5 s, jestliže od začátku kmitání uplynula doba 0,05 s. Počáteční faáze kmitavého pohybu je rovna nule. Jakou rychlostí se šíří vlna, jestliže má vlnovou délku 0,425 m a kmitočet 2,5 kHz?

5. Jaký je fázový rozdíl dvou bodů postupné vlny o frekvenci 2 Hz, která se šíří podél pryžové hadice rychlostí o velikosti 3 m.s-1? Vzájemná vzdálenost bodů je 75 cm. Jakou rovnici má vlna, jejíž frekvence je 30 Hz a amplituda 2 cm, jestliže postupuje v kladném směru osy x rychlostí 3 m.s-1? 7. Zvuk se šíří ve vodě rychlostí 1480 m.s-1, ve vzduchu rychlostí 340 m.s-1. Jak se změní při přechodu zvuku ze vzduchu do vody jeho vlnová délka? Jaká je vzdálenost mezi sousedními uzly stojaté podélné zvukové vlny ve vzduchu, má-li zvuk ve vzduchu rychlost 342 m.s-1 a frekvenci 440 Hz?