Prvky III. hlavní skupiny (B, Al, Ga, In, Tl)

Slides:



Advertisements
Podobné prezentace
d – P R V K Y prvky se zaplněnými (částečně či úplně) d či f orbitaly
Advertisements

TEORIE KYSELIN A ZÁSAD NEUTRALIZACE, pH.
Škola pro děti Registrační číslo projektu: CZ.1.07/1.4.00/
Významné lehké kovy Sodík, vápník, hliník.
Alkalické kovy.
I I I. S K U P I N A.
REDOXNÍ DĚJ RZ
Al, Ga, In, Tl.
Měď, stříbro, zlato Cu – biogenní (měkkýši – krevní barvivo)
F-prvky.
Hliník Aktivita č. 6: Poznáváme chemii Prezentace č. 14
Polokovy Projekt: Svět práce v každodenním životě Číslo projektu: CZ.1.07/1.1.26/ Aktivita č. 6: Poznáváme chemii Prezentace č. 10 Autor: Hana.
V.A (15.) skupina.
CHEMICKÉ REAKCE.
SOLI RZ
Alkalické kovy Struktura vyučovací hodiny:
Fosfor. Poloha v periodické tabulce V.A skupina (skupina dusíku)
Uhlík.
HALOGENY.
Chalkogeny Richard Horký.
IV. S K U P I N A.  Císař Sicilský Germány Snadno Pobil  Co Si, Gertrůdo, Snědla: Plumbum?  Cudná Simona Gertrudu Snadno Pobuřovala.
Soli Při vyslovení slova sůl se každému z nás vybaví kuchyňská sůl - chlorid sodný NaCl. V chemii jsou však soli velkou skupinou látek a chlorid sodný.
I. A (1.) skupina Vodík a alkalické kovy
I.A skupina.
Alkalické kovy Obecná charakteristika + I
Kovy alkalických zemin
Triely – prvky III.A skupiny, bór (5B)
Dusík, N.
Příprava a vlastnosti dvouprvkových sloučenin
1 Škola:Chomutovské soukromé gymnázium Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Moderní škola Název materiálu:VY_32_INOVACE_CHEMIE1_18 Tematická.
Hliník Výskyt hliníku: Výroba hliníku:
Wolfram.
Bor.
Halogeny Aktivita č. 6: Poznáváme chemii Prezentace č. 5
Kyslík.
Zdravotnický asistent, první ročník Nepřechodné kovy Hliník Autor: Mgr. Veronika Novosadová Vytvořeno: jaro 2012 SZŠ a VOŠZ Zlín ZA, 1. ročník / Nepřechodné.
Nikl.
Mezimolekulové síly.
H A L O G E N Y.
Mgr. B. Nezdařilová H LINÍK. O BSAH Výskyt Vlastnosti Příprava Významné sloučeniny Využití.
Zdravotnický asistent, první ročník Nepřechodné kovy Sloučeniny hliníku Autor: Mgr. Veronika Novosadová Vytvořeno: jaro 2012 SZŠ a VOŠZ Zlín ZA, 1. ročník.
Kovy II. hlavní skupiny (alkalických zemin + Be, Mg)
Mgr. Blanka Nezdařilová
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_93.
VODÍK.
FS kombinované Mezimolekulové síly
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_INOVACE_73.
Bór B, Borum Janovský Marek, 2.A.
3. skupina PS, ns2np1 Bor, hliník, gallium, indium, thallium
Mgr. Jitka Vojáčková. * Výskyt v přírodě * Vlastnosti * Výroba * Použití * Bezkyslíkaté sloučeniny * Kyseliny boru.
PrvekXI b. t. (K) b. v. (K) O 3, ,3 90,1 S 2, ,6 717,7 Se 2, ,6 958,0 Te 2, ,91263,0 Po 1, ,0 1235,0 VI. VI. skupina.
Hliník Mgr. Jitka Vojáčková.
Zlepšování podmínek pro výuku technických oborů a řemesel Švehlovy střední školy polytechnické Prostějov registrační číslo : CZ.1.07/1.1.26/
B, Al. PrvekX I I [kJ mol -1 ] I II [kJ mol -1 ] I III [kJ mol -1 ] E 0 [V]ρ [g cm -3 ] b. t. [°C] b. v. [°C] r [pm] B 2, ,8b2,
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Alexandra Hoňková. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací materiál.
Autor : Mgr. Terezie Nohýnková Vzdělávací oblast : Člověk a příroda Obor : Přírodopis Téma : Planeta Země Název : Minerály – přehled Použité zdroje a materiály.
B, Al.
Hliník Výskyt hliníku: Výroba hliníku:
Hliník Výskyt hliníku: Výroba hliníku:
Název školy Gymnázium, střední odborná škola, střední odborné učiliště a vyšší odborná škola, Hořice Číslo projektu CZ.1.07/1.5.00/ Název materiálu.
Hořčík.
Bor 13. srpna 2013 VY_32_INOVACE_130110
ELEKTROCHEMICKÉ VÝROBNÍ PROCESY
ELEKTROTECHNICKÉ MATERIÁLY
Prvky I.A skupiny - alkalické kovy, vodík
Alkalické kovy.
3. skupina PS, ns2np1 Bor, hliník, gallium, indium, thallium
Bor H3BO3 2 B2O3 + 6 Mg B + 6 MgO 2 BCl3 + 3 Zn 2 B + 3 ZnCl2
Sestavila Michaela VRBOVÁ (pro didaktické účely)
HLINÍK ( Aluminium) Al nejdůležitější prvek III.A = triely
Transkript prezentace:

Prvky III. hlavní skupiny (B, Al, Ga, In, Tl)

Historie sloučeniny B a Al známy od starověku 1808 připraven nečistý bór, kvalitní až v roce 1892 1827 první příprava hliníku 1854 výroba redukcí draslíkem nebo elektrolýzou, kov velmi drahý, vystavován s korunovačními klenoty a používán na císařských recepcích 1886 zvládnuta průmyslová výroba hliníku elektrolýzou oxidu v roztaveném kryolitu

Historie 1861 spektroskopicky objeveno Tl 1863 spektroskopicky objeveno In existenci gallia předpověděl Mendělejev v roce 1870, objeveno spektroskopicky ve sfaleritu v roce 1875

Vlastnosti prvků III. hlavní skupiny konfigurace ns2np1 stálost vyššího oxidačního stavu se postupně snižuje: B a Al jen M+III (+ B-III) Ga a In převážně M+III, méně M+I Tl převážně Tl+I, omezeně Tl+III bor nekov až polokov, ostatní kovy   X t.t. (°C) B 2,04 2180 Al 1,47 660 Ga 1,82 30 In 1,49 157 Tl 1,44 303

Borité suroviny Boritany colemanit Ca2B6O11 . 5 H2O, borax Na2B4O7 . 10 H2O, hlavní suroviny, USA a Turecko (95 % světových zásob) Sassolin H3BO3 pouze lokálně (Itálie) Boritokřemičitany danburit CaB2Si2O8, datolit CaBSiO4(OH) Rusko

Bor Velmi obtížná příprava v čistém stavu redukcí oxidu hliníkem, chloridu zinkem nebo (nejčistší) bromidu vodíkem na žhaveném vlákně 2 BBr3 + 3 H2 → 2 B + 6 HBr několik alotropických krystalických fází, nemají praktický význam Bor přímo reaguje s F a za vyšší teploty i s dalšími halogeny a nekovy, ne s H2

Boridy Sloučeniny boru s kovy, ve kterých má bor záporné oxidační číslo (–III, většinou však velmi nestandardní stechiometrické poměry v důsledku tvorby skupin atomů boru, od M5B po MB66) Ve struktuře většinou menší skupiny, řetězce, oktaedry nebo ikosaedry B12

Struktura B4C

Boridy Některé boridy jsou mimořádně tvrdé, chemicky odolné a žáruvzdorné, elektricky vodivé body tání až přes 3000 °C (např. ZrB2) Příprava přímou reakcí prvků, reakcí oxidů s borem nebo reakcí B2O3 nebo B4C s prvkem v redukčním prostředí (C, H2)

B4C 2 B2O3 + 7 C → B4C + 6 CO (1600 °C) Použití: Neutronové štíty, kontrolní tyče v jaderných reaktorech, brusivo, leštící přípravky, obložení brzd, pancíře Vlákna B4C do kompozitů (křídla letadel) I jiné boridy mají uplatnění, např. TiB2 k výrobě lopatek plynových turbin

Nitrid boru BN Šesterečný BN H3BO3 + CO(NH2)2  BN + CO2 + H2O 500 až 950 °C, NH3 vrstevnatá struktura podobná grafitu, elektrický izolant, výborný vodič tepla bílý grafen

Nitrid boru BN Kubický BN ze šesterečného při 1800 °C a 8500 GPa diamantová struktura mimořádně tvrdý, brusné nástroje, některé vlastnosti lepší než diamant

Borany Sloučeniny BnHm, řada sloučenin, velmi rozdílné struktury Mg3B2 + HCl → MgCl2 + B2H6, B4H10 ... základní člen diboran B2H6 trojstředová vazba

Diboran Výroba B2H6 2 NaBH4 + I2  B2H6 + 2 NaI + H2 3 NaBH4 4 Et2O.BF32 B2H6+3 NaBF4+ 4 Et2O Výchozí surovina pro výrobu ostatních boranů, samozápalný B2H6 + 3 O2  B2O3 + 3 H2O

Další borany Velmi složité struktury, příprava pyrolýzou diboranu za určitých podmínek a s katalyzátory, raketové palivo

Karborany Borany s atomy uhlíku ve struktuře Proti boranům stálejší, materiály pro nanoelektroniku, speciální plasty, léky

Halogenidy boru Trihalogenidy BX3 monomerní, molekuly tvaru rovnostranného trojúhelníka, hybridizace sp2, BF3 a BCl3 plyny, BBr3 kapalina, BI3 nízkotající pevná látka 3 CaF2 + B2O3 + 3 H2SO4  3 CaSO4 + 3 H2O + 2 BF3 B2O3 + 3 C + 3 Cl2  2 BCl3 + 3 CO

Halogenidy boru Elektronově deficitní struktury BX3 (Lewisovy kyseliny) ochotně reagují s molekulami s volnými elektronovými páry (Lewisovy báze) za vzniku aduktů (komplexů). Vazba je donor – akceptorová.

Halogenidy boru Reakce BF3 NaF + BF3  Na[BF4] BF4- izostrukturní s CH4 BF3 + NH3  BF3·NH3 BF3 + H2O  H[BF3(OH)] Reakce BCl3 (obdobně BBr3 a BI3) BCl3 + 3 H2O  H3BO3 + 3 HCl použití: Friedel-Craftsovy syntézy

Oxid boritý Oxid B2O3 je vysoce hygroskopický a velmi obtížně krystaluje (lehce tvoří sklo) Příprava oxidu dehydratací H3BO3 2 H3BO3 → B2O3 + 3 H2O Roztavený B2O3 lehce rozpouští většinu oxidů kovů za vzniku boritanových skel, obdoba křemičitých skel

Kyseliny borité Kyselina trihydrogenboritá H3BO3 v roztoku se chová jako jednosytná slabá kyselina H[B(OH)4], silná závislost rozpustnosti ve vodě na teplotě, nejběžnější surovina boru, výroba rozkladem boritanů kyselinami široké použití v keramice (glazury), sklářství (boritokřemičitá skla Pyrex a Simax), zdravotnictví, prací prášky

Kyseliny borité Kyselina hydrogenboritá HBO2 příprava opatrnou dehydratací H3BO3, polymerní struktura, skelný vzhled Kyseliny polyborité složité struktury aniontů složené z planárních jednotek BO3 a tetraedrických BO4, v roztoku nestálé, anionty běžně v boritanech

Boritany Soli různých kyselin boritých, některé mají velmi složité aniony Na2B4O7 . 10 H2O dekahydrát tetraboritanu disodného – borax přesněji: Na2[B4O5(OH)4]. 8 H2O použití jako H3BO3

Výskyt hliníku Hliník je značně rozšířený (třetí v pořadí po O a Si, 8,3 hmot. % zemské kůry), ale obsažen je hlavně v horninotvorných minerálech (hlinitokřemičitanech živcích, pyroxenech, amfibolech, slídách atd.). Pro výrobu hliníku jsou vhodné pouze tzv. bauxity (směs několika minerálů oxid-hydroxidů hlinitých).

Výskyt Ga, In a Tl Gallium nízký obsah a malý význam, doprovází hliník v bauxitu a získává se jako vedlejší produkt při výrobě hliníku Indium nízký obsah a malý význam, doprovází zinek ve sfaleritu, vedlejší produkt při výrobě zinku Thallium nízký obsah a malý význam, doprovází olovo v galenitu, vedlejší produkt při výrobě olova

Výroba hliníku Výhradním výrobním postupem je oddělení hliníku z bauxitu Bayerovým procesem a elektrolýza oxidu hlinitého rozpuštěného v roztaveném kryolitu Na3[AlF6] Bayerův proces Al2O3 + 2 NaOH + 3 H2O → 2 Na[Al(OH)4] v autoklávu, po ochlazení a zředění opět vypadne Al2O3

Výroba hliníku 960 °C, velká spotřeba elektrického proudu katoda: Al3+ + 3 e–  Al(l) anoda: 2 O2– + C  CO2 + 4 e–

Použití kovů Hliník hlavně konstrukční slitiny Gallium hlavně GaAs pro polovodičové aplikace Indium nízkotavné pájky, polovodičové materiály InP, InAs a InSb Thallium infračervené materiály, velmi jedovaté

Halogenidy hliníku AlF3 typicky iontová sloučenina, netěkavá a ve vodě nerozpustná příprava: Al2O3 + 6 HF  2 AlF3 + 3 H2O (700 °C) lehce tvoří komplexní soli AlF3 + 3 NaF  Na3[AlF6] kryolit

Halogenidy hliníku AlCl3 bezvodý tvoří dimer, použití jako Friedel-Craftsovy katalyzátory AlCl3 . 6 H2O úplně jiná struktura [Al(H2O)6]Cl3 komplexní kationt, koordinační číslo 6, oktaedr

Oxidy a hydroxidy hlinité Al2O3 několik modifikací, nejstálejší α - Al2O3 korund, mimořádně tvrdá látka, nelze jí rozpustit v žádném roztoku, pouze tavením s KHSO4 Příprava: zahříváním všech ostatních oxidů a hydroxidů na teploty nad 850 °C Použití: brusný materiál, přírodní barevné jako drahokamy (rubín, safír)

Drahokamové odrudy korundu rubín safír

Oxidy a hydroxidy hlinité Al2O3 modifikace γ - Al2O3, měkká látka s velkým povrchem, dobře rozpustná v kyselinách a louzích, použití v chromatografii Al(OH)3 amorfní nebo krystalický, několik modifikací (v přírodě gibbsit), typické amfoterní chování Al(OH)3 + 3 HNO3 → Al(NO3)3 + 3 H2O Al(OH)3 + NaOH → Na[Al(OH)4]

Oxidy a hydroxidy hlinité Al(O)OH nebo AlO(OH) hydroxid-oxid hlinitý, v několika modifikacích, v přírodě diaspor a boehmit Všechny uvedené oxidy, hydroxidy a hydroxid-oxidy složkami bauxitu

Soli hlinité V hydratovaných solích kationty [Al(H2O)6]3+, iontové struktury, řada solí rozpustných ve vodě (dusičnan, síran), fosforečnan nerozpustný, uhličitan se netvoří Při pH 3 až 5 se začíná vylučovat amorfní hydroxid Al(OH)3 Kamence M+1Al(SO4)2 . 12 H2O M = K, Na, NH4), podvojné sírany, velmi dobře rozpustné ve vodě a dobře krystalizující

Soli Ga, In a Tl Soli gallia s Ga3+ obdobou solí hliníku, existují i sloučeniny Ga+ s malou stálostí Soli india obdobné jako gallia, In již nemá amfoterní charakter a nerozpouští se v alkáliích Soli thallia jsou typické kationtem Tl+ tvořícím ve vodě velmi málo rozpustný TlCl, vzácné soli Tl3+ jsou velmi silnými oxidovadly, soli Tl jsou velmi jedovaté