UMĚLÁ INTELIGENCE V EKONOMICKÝCH DISCIPLÍNÁCH

Slides:



Advertisements
Podobné prezentace
Matematické modelování a operační výzkum
Advertisements

LOGISTICKÉ SYSTÉMY 6/14.
Úvod Klasifikace disciplín operačního výzkumu
Umělá inteligence. Dva přístupy Technický – formální systémy, modely, konkrétní aplikace Filosofický – definice inteligence, vztah k mysli, vědomí a navíc.
A5M33IZS – Informační a znalostní systémy Datová analýza I.
Hodnotový management Teorie rozhodování
Základy informatiky přednášky Kódování.
Architektury a techniky DS Tvorba efektivních příkazů I Přednáška č. 3 RNDr. David Žák, Ph.D. Fakulta elektrotechniky a informatiky
ENERGIE KLASTRŮ VODY ZÍSKANÁ EVOLUČNÍMI ALGORITMY
Genetické algoritmy [GA]
Vypracoval: Ladislav Navrátil, EI-4 Umělá inteligence Zaměření Expertní systémy.
ROZHODOVACÍ PROCESY PRO VÍCECESTNÉ TELEMATICKÉ APLIKACE Filip Ekl
Genetické algoritmy. V průběhu výpočtu používají náhodné operace. Algoritmus není jednoznačný, může projít více cestami. Nezaručují nalezení řešení.
Úvod do umělé inteligence
IS V EKONOMICKÝCH SUBJEKTECH Ing. Jiří Šilhán. IS IS – data+lidi+HW, prvky + relace mezi uživateli, které splňují nějaké cílové chování – tak aby byly.
Analýzy administrativních procesů. Analýzy ve 2 krocích Analýza dokumentů Analýza administrativních procesů.
DOK „Umělá inteligence“ v DOK (i jinde). NEURONOVÉ SÍTĚ.
Využití umělých neuronových sítí k urychlení evolučních algoritmů
Návrh a optimalizace filtru OTA-C s využitím evolučních algoritmů Praha 2007 Bc. Dalibor Barri ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická.
FORMALIZACE PROJEKTU DO SÍŤOVÉHO GRAFU
Metody zkoumání ekonomických jevů
Praktické aspekty využívání exaktních metod Pozice exaktních přístupů
LOGISTICKÉ SYSTÉMY 7/14.
Adéla Masopustová Alena Seifrtová Lukáš Hůla
Optimalizační úlohy i pro nadané žáky základních škol
Řešení dynamických problémů s podmínkami Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
Znalostní fuzzy systém pro podporu rozhodování o určení výše finanční půjčky.
Umělá Inteligence II. Umělá inteligence je vědní disciplína věnující se tvorbě počítačových programů řešících složité úlohy s takovými výsledky, které.
Informační strategie. řešíte otázku kde získat konkurenční výhodu hledáte jistotu při realizaci projektů ICT Nejste si jisti ekonomickou efektivností.
MODELOVÁNÍ SYSTÉMŮ V OBLASTI SPOLEČENSKÝCH VĚD Miroslav Pokorný.
EKONOMICKO MATEMATICKÉ METODY
Fuzzy logika.
Systémy pro podporu managementu 2
Obchodní akademie, Náchod, Denisovo nábřeží 673
METODY NEKONVENČNÍHO MODELOVÁNÍ S PŘÍSTUPY UMĚLÉ INTELIGENCE
Genetické algoritmy [GA]. Historie:  1960: I. Rechenberg – první odborná práce na toto téma „Evolution strategies“  1975: John Holland – první genetický.
Artificial Intelligence (AI).  „Úloha patří do oblasti umělé inteligence, jestliže řešení, které najde člověk považujeme za projev jeho inteligence.
1 Kognitivní inspirace třídění na základě závislostí atributů Jan Burian Eurfomise centrum – Kardio, Ústav informatiky AV ČR Článek je dostupný na WWW:
Systémy pro podporu managementu 2 Inteligentní systémy pro podporu rozhodování 1 (DSS a znalostní systémy)
MANAŽERSKÉ ÚČETNICTVÍ
Metody výběru variant Používají se pro výběr v případě více variant řešení stejného problému Lze vybírat dle jednoho nebo více kritérií V případě více.
Umělá inteligence Minského definice: UI je věda o vytváření strojů nebo systémů, které budou při řešení určitého úkolu užívat takového postupu, který –
Zpracování neurčitosti Fuzzy přístupy RNDr. Jiří Dvořák, CSc.
Databázové systémy Informatika pro ekonomy, př. 18.
Rozhodovací proces, podpory rozhodovacích procesů
Metrologie   Přednáška č. 5 Nejistoty měření.
Paralelní algoritmy ve zpracování dat Bc. Jan Hofta Výzkumný úkol:
Alternativy k evolučním optimalizačním algoritmům Porovnání genetických algoritmů a některých tradičních stochastických optimalizačních přístupů David.
Opakování lekce 4,5,
1 Název celé následující kapitoly Řízení hospodárnosti režijních nákladů.
MANAGEMENT - Pojetí managementu
CW – 05 TEORIE ROZHODOVACÍCH PROCESŮ Ústav technologie, mechanizace a řízení staveb Fakulta stavební VUT v Brně Ing. Václav Rada, CSc. Leden 2009.
1. Charakteristika IS Informační systém je soubor lidí, technických prostředků a metod, zabezpečujících sběr, přenos, uchování a zpracování dat za účelem.
Umělá inteligence Robin Horniak. Definice Umělá inteligence (Artificial Intelligence), zkráceně UI (AI) věda, která se zabývá tím, jak přinutit stroje.
Elektrotechnická fakulta ČVUT KATEDRA KYBERNETIKY Vedoucí prof. Ing. Vladimír Mařík, DrSc. KATEDRA KYBERNETIKY ELEKTROTECHNICKÁ.
Elektrotechnická fakulta ČVUT KATEDRA KYBERNETIKY Vedoucí prof. Ing. Vladimír Mařík, DrSc. KATEDRA KYBERNETIKY ELEKTROTECHNICKÁ.
Geografické informační systémy pojetí, definice, součásti
Simulátory umělého života Aplikovatelné v environmentálních informačních systémech.
Autorita Schopnost získat si respekt podřízených. Rozlišujeme formální, neformální a odbornou autoritu Autoritativní styl řízení Styl řízení založený.
Ověření modelů a modelování Kateřina Růžičková. Posouzení kvality modelu Ověření (verifikace) ● kvalitativní hodnocení správnosti modelu ● zda model přijatelně.
Mentální reprezentace
SOFTWAROVÁ PODPORA PRO VYTVÁŘENÍ FUZZY MODELŮ Knihovna fuzzy procedur Ing. Petr Želasko, VŠB-TU Ostrava.
Financováno z ESF a státního rozpočtu ČR.
Ing. Milan Houška KOSA PEF ČZU v Praze
Základní pojmy v automatizační technice
Dobývání znalostí z databází znalosti
Co se dá změřit v psychologii a pedagogice?
Metody strojového učení
Simulace řízení při správě majetku
Ing. Milan Houška KOSA PEF ČZU v Praze
Transkript prezentace:

UMĚLÁ INTELIGENCE V EKONOMICKÝCH DISCIPLÍNÁCH Miroslav POKORNÝ, Zdeňka KRIŠOVÁ Ústav informatiky Moravská vysoká škola Olomouc, o.p.s., Jeremenkova 42, 772 00 Olomouc

Umělá inteligence - vědní disciplína věnující se tvorbě počítačových programů řešících složité úlohy s takovými výsledky, které bychom považovali při řešení stejných úloh člověkem (expertem v daném oboru) jako projevy jeho přirozené inteligence. se zabývá řešením problémů v oblasti základní jazyky umělé inteligence, matematická logika, reprezentace znalostí, metody řešení úloh i v oblasti aplikační nástroje řešení úloh, plánování, počítačové vidění, rozpoznávání řeči zpracování přirozeného jazyka, znalostní systémy robotika

Programy umělé inteligence pracují převážně se symbolickými objekty – na rozdíl od konvenčních, které pracují s čísly. Takovými symbolickými objekty jsou nejčastěji slova přirozeného jazyka. Pro oblast umělé inteligence jsou charakteristické právě takové úlohy, které numerickými prostředky lze popsat jen velmi obtížně nebo vůbec ne. Přechod od zpracování (numerických) dat ke zpracování (nenumerických, jazykových) informací - znalostí. Programy umělé inteligence zahrnují komplexnost, nejistotu a víceznačnost. Stejně jako pro lidské uvažování je charakteristické velmi efektivní využití neurčitosti (základní vlastností sloních pojmů je jejich vágnost a přitom uvažujeme zásadně pomocí slovních pojmů) tak i prostředky umělé inteligence musí být schopny vágnost (i jiné typy neurčitosti) formalizovat a efektivně je využívat pro kvalitu svých závěrů. Programy umělé inteligence jsou z principu dobře modifikovatelné Striktní oddělení znalostí o řešené úloze od vlastního řešicího mechanizmu umožňuje efektivní odstraňování znalostí již neaktuálních a naopak přidávání znalostí nových.

Programy umělé inteligence využívají lidských znalostí a zkušeností Programy umělé inteligence využívají lidských znalostí a zkušeností. Dovolují zahrnout do programových struktur expertní heuristiky, znalosti a metaznalosti. Takové informace (nenumerického charakteru, jsou vyjádřitelné slovy a větami přirozeného jazyka). Stejně jako lidé často používají k řešení (složitých) problémů heuristické přístupy, které jsou pro kvalitní řešení problémů velmi významné. Takové heuristické procedury jsou prostředky klasické numerické matematiky (a logiky) neformalizovatelné a nevyužitelné. Programy umělé inteligence mají výrazně procedurální charakter (na rozdíl od programů matematických, které mají charakter deklarativní). Řídicí struktury prostředků umělé inteligence jsou proto odděleny od informací – znalostí. Programové nástroje umělé inteligence jsou určeny k podpoře rozhodování manažera při řešení složitých problémů formou řízené konzultace. Jen málokdy jsou koncipovány pro práci v režimu on-line. Nemusí totiž produkovat vždy jen správné výsledky, jejich – často variantní – závěry jsou však vždy kvantitativně ohodnoceny a programový systém je schopen vysvětlit, jakým postupem a při použití jakých informací (znalostí) závěry získal (vyvodil).

Programové nástroje umělé inteligence jsou určeny k podpoře rozhodování manažera při řešení složitých problémů formou řízené konzultace. Jen málokdy jsou koncipovány pro práci v režimu on-line. Nemusí totiž produkovat vždy jen správné výsledky, jejich – často variantní – závěry jsou však vždy kvantitativně ohodnoceny a programový systém je schopen vysvětlit, jakým postupem a při použití jakých informací (znalostí) závěry získal (vyvodil). Rozhodovací procesy v mozku jsou sice postaveny i na využití obecných znalostí – jejich vyšší kvalita je však především dána využitím znalostí subjektivních. K vyvozování závěrů jsou pak používány vysoce efektivní (a přitom zřejmě jednoduché) nenumerické přístupy. Zde je třeba si uvědomit zásadní skutečnost – vyvozovací procesy v mozku nejsou postaveny na matematických, numerických přístupech, nýbrž na přístupech jazykových a slovních. Jedná se totiž o nenumerické modely mentální. Lidské uvažování a řešení problémů není principiálně postaveno na výpočtech.

Velký význam mají mentální modely zvláště dnes, kdy superturbulentní doba přináší stále častější a nečekané odchylky od obecných zákonitostí. Např. klasické metody predikce chování soustav (obecné statistické metody, založené na extrapolaci, trendech, vlastnostech řad) jsou stále méně použitelné a stéle větší význam má využití znalostí, zkušeností, heuristik až intuice. Základní problém aplikace metod umělé inteligence Uvažujeme-li problém vybudování takového programového systému, který by řešil daný problém stejně kvalitně jako lidský expert, musíme vyřešit dvě základní úlohy: a) jakým způsobem formalizovat v počítači lidské znalosti – hlavně subjektivní (tj. formalizovat v počítači mentální model) b) na jakých principech vybudovat logické algoritmy, které budou nad těmito znalostmi operovat a vyvozovat pomocí nich závěry.

A. Znalostní fuzzy-logické jazykové modelování Uvažujme ilustrační a zjednodušený mentální model odhadu výše zisku v závislosti na odbytu a výrobních nákladech. Vágní jazykové výrazy, které odborník používá ve svých mentálních pochodech, (NÍZKÝ ODBYT, VYSOKÝ ODBYT, MALÝ ZISK, VELKÝ ZISK) jsou v jazykových (slovních) fuzzy modelech formalizovány pomocí fuzzy množin a vystupují v úloze vstupních a výstupních jazykových proměnných (ODBYT, ZISK) a jejich jazykových hodnot (NÍZKÝ, VYSOKÝ, MALÝ, VELKÝ). Vyvozovací procedury využívají principů vícehodnotové jazykové fuzzy logiky. Znalosti jsou uloženy pomocí vět přirozeného jazyka ve standardní formě podmíněných pravidel (báze znalostí), vyvozovací procedury jsou reprezentovány algoritmy s fuzzy-logickými operacemi (inferenční nebo řídicí mechanizmus)

A1. Formalizace expertního mentálního modelu Uvažujme fragment expertního mentálního modelu závislosti zisku na výši ceny výrobku, kvalitě výrobku a velikosti konkurence na trhu. Nechť takový model zahrnuje mj. takovou znalost: V situaci, kdy kvalita výrobku je nízká a cena výrobku je nízká a konkurence je vysoká, lze očekávat zisk velmi nízký. Jazykové modely využívají k reprezentaci znalostí o chování systémů standardních pravidel typu JESTLIŽE – PAK (anglicky IF – THEN). R: IF (KV is NI) and (CV is NIZ) and (KO is VY) THEN (ZI is VN)

Úplná množina pravidel modelu (báze znalostí) KV CV KO ZI 1 NI NI NI NI 2 NI VY NI ST 3 NI NI VY VN 4 NI VY VY NI 5 ST NI NI ST 6 ST VY NI VY 7 ST NI VY NI 8 ST VY VY ST 9 VY NI NI VY 10 VY VY NI VV 11 VY NI VY ST 12 VY Y VY VY

Základní okno pro fuzzy modelování v systému MATLAB

Definice vstupní jazykové proměnné KVALITA VÝROBKU

Definice vstupní jazykové proměnné CENA VÝROBKU

Definice vstupní jazykové proměnné KONKURENCE

Definice výstupní jazykové proměnné ZISK

Editační okno jazykových pravidel (báze znalostí) modelu

Ukázka dvojrozměrné funkční závislosti zisku na ceně a kvalitě výrobku

Simulační interaktivní okno

B. Samoučicí se neuronové modely (umělé neuronové sítě) V rámci metod umělé inteligence hrají významnou roli neuronové sítě. Jsou to struktury, které jsou inspirovány svými biologickými vzory. Stejně jako biologické jsou i umělé neuronové sítě tvořeny množinou perceptronů (modelů biologických neuronů) vzájemně propojených vazbami (obdoba neuronových vazeb synoptických). Jejich hlavním úkolem je simulovat a implementovat schopnost adaptace a učení lidského mozku.

Propojení neuronů může být libovolné, v praxi však používáme často tzv. sítě vícevrstvé, v nichž jsou neurony uspořádány do několika vrstev nad sebou.

Schéma procedury učení sítě metodou Back Propagation  min

B1. Fuzzy-neuronová síť

C. Optimalizační genetické algoritmy univerzální optimalizační genetické algoritmy, založené na principech biologické evoluce a na mechanizmu přirozeného výběru. Jsou obecně určeny k vyhledávání nejlepšího (optimálního) řešení problému jako extrému (obvykle minima) jeho účelové optimalizační funkce. Základem pro operace genetického algoritmu je znakový řetězec, v němž jsou zakódovány hodnoty parametrů optimalizované funkce – tzv. chromozom. [ 0 0 1 0 1] Každý chromozom má kromě své základní vlastnosti – zakódovaných hodnot parametrů – přiřazenu velikost své fitness funkce, která jej ohodnocuje z hlediska jeho blízkosti chromozomu optimálnímu. Chromozom s např. vyšší hodnotou své fitness funkce je optimálnímu řešení bližší než chromozom s hodnotou nižší.

Operace reprodukce je proces, při němž jsou jednotlivé chromozomy kopírovány do nové populace podle velikosti jejich fitness hodnoty. Čím je její velikost vyšší, tím má chromozom větší pravděpodobnost přežití, tj. přestupu do další generace chromozomů. Tím jsou "dobrá" řešení vybírána pro další reprodukci a "špatná" jsou eliminována. Operace křížení je tvořena dvěma kroky. V prvním jsou vybrány náhodné páry dvou chromozomů a dělicí bod, ve druhém je realizován vlastní proces křížení vzájemnou výměnou jejich částí.

Při operaci mutace je s určitou, obvykle velmi malou pravděpodobností, měněna hodnota genů chromozomu z 1 na 0 a opačně.

Sekvence kroků genetického algoritmu 1. Definice optimalizační úlohy a tvaru účelové (fitness) funkce 2. Rozhodnutí o způsobu kódování chromozomů 3. Stanovení parametrů křížení a mutace 4. Stanovení způsobu výběru chromozomů do nové populace 3. Vygenerování nulté (výchozí) populace chromozomů 4. Výpočet hodnot fitness funkcí chromozomů populace 5. Aplikace operací křížení a mutace - vygenerování potomků 6. Výpočet hodnot fitness funkcí chromozomů potomků 7. Výběr chromozomů do nové populace 8. Opakování procedury od bodu ad 4) 9. Rozhodnutí o ukončení procedury GA

C1. Úloha hledání minima dvojrozměrné funkce souřadnice x souřadnice y 1

Průběh a výsledek minimalizační procedury Souřadnice minima: x = -4,712 y = 0 Extrém (minimum) fitness funkce Jmin = zmin = -1,999999237060392

C2. Úloha obchodního cestujícího - obchodní cestující musí navštívit každé ze 40 měst - minimalizace cestovních nákladů - trasa musí být nejkratší možná - každé město může být navštíveno pouze jednou

Fitness funkce J – celková délka ujeté trasy – minimalizace Struktura chromozomu – vektor posloupnosti navštívených měst Mk na trase b1 b2 b3 bk b38 b39 b40 M1 M2 M3 . Mk. M38 M39 M40 Fitness funkce J – celková délka ujeté trasy – minimalizace Počet kroků při slepém prohledávání úplného prostoru řešení (počet permutací)

Výsledná optimální trajektorie

Děkuji Vám za pozornost !