Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

Slides:



Advertisements
Podobné prezentace
Vlastnosti trojúhelníku
Advertisements

Středový a obvodový úhel
Konstrukce lichoběžníku
Užití Thaletovy kružnice
Konstrukce trojúhelníku
Konstrukce lichoběžníku 1
Shodnost rovinných útvarů Shodnost trojúhelníků
Sestrojení úhlu o velikosti 60° pomocí kružítka.
GEOMETRICKÉ TVARY v rozsahu učiva 1. stupně ZŠ
Základní konstrukce Rovnoběžky.
GEOMETRICKÉ TVARY v rozsahu učiva 1. stupně ZŠ
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce rovnoběžníku
Konstrukce trojúhelníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce lichoběžníku
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Matematika Lichoběžník.
Podobnost rovinných útvarů
OBSAHY ROVINNÝCH ÚTVARŮ
Krácení a rozšiřování postupného poměru.
Lichoběžník Obsah lichoběžníku.
Výpočet obsahu rovnoběžníku
Obvod a obsah rovinného obrazce III.
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Trojúhelník Vnitřní a vnější úhly v trojúhelníku Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR.
Konstrukce trojúhelníku s kružnicí opsanou v zadání
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
ROVINNÉ ÚTVARY A JEJICH OBVODY
Dvourozměrné geometrické útvary
Konstrukce trojúhelníku
Dvourozměrné geometrické útvary
Konstrukce mnohoúhelníku
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN: , financovaného.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Pythagorova věta Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Užití Thaletovy kružnice
MNOHOÚHELNÍKY DRUHY TROJÚHELNÍKŮ
Jak postupovat při převádění jednotek délky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Množina bodů dané vlastnosti
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Čtverec kružítkem Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
KOSOČTVEREC 1. ZÁKLADNÍ VLASTNOSTI KOSOČTVERCE
Známe-li délku úhlopříčky.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Obvod rovnoběžníku. Jméno autora: Marie Roglová Škola: ZŠ Náklo Datum vytvořeníProsinec 2012 Ročník: 7. Tematická oblast: Matematická gramotnost Téma:Rovnoběžník.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lichoběžníky a jejich vlastnosti
Vnitřní a vnější úhly v trojúhelníku
Lichoběžníky a jejich vlastnosti
Čtyřúhelníky Druhy čtyřúhelníků
Provozováno Výzkumným ústavem pedagogickým v Praze.
Lichoběžníky a jejich vlastnosti
Konstrukce lichoběžníku
Konstrukce lichoběžníku
Převody jednotek délky - 2.část
Obsahy rovinných útvarů
Lichoběžník Obvod lichoběžníku.
Obvod a obsah rovinného obrazce III.
Transkript prezentace:

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Lichoběžník Obvod lichoběžníku

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. a  c ; AB  CD Lichoběžník a jeho vlastnosti Lichoběžník je čtyřúhelník, který má jen jednu dvojici protilehlých stran rovnoběžnou. Zopakujme si nejdříve základní vlastnosti. Který čtyřúhelník má obě dvojice protilehlých stran rovnoběžné? Rovnoběžník

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. a  c ; AB  CD Lichoběžník a jeho vlastnosti Rovnoběžným stranám říkáme základny lichoběžníku, Zopakujme si nejdříve základní vlastnosti. Nepřipomíná vám to označení něco? Rovnoramenný trojúhelník nerovnoběžným ramena lichoběžníku. b  d ; BC  DA

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.  +  =  +  = 180° Lichoběžník a jeho vlastnosti Součet velikostí úhlů při jednom rameni je vždy 180°. Součet velikostí úhlů  a  při rameni b je 180°.  +  = 180° Součet velikostí úhlů  a  při rameni d je 180°.  +  = 180°

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.  +  +  +  = 360° Lichoběžník a jeho vlastnosti Součet velikostí všech vnitřních úhlů je 360°.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Lichoběžník a jeho vlastnosti Výška lichoběžníku je kolmá vzdálenost rovnoběžných stran. Výšku lichoběžníku značíme písmenem v. Výšek můžeme sestrojit nekonečně mnoho, všechny však budou mít stejnou velikost.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Lichoběžník a jeho druhy Prozatím jsme vše opakovali na lichoběžníku, kterému se říká obecný lichoběžník. Objevila se tady však už i zmínka o podobnosti s rovnoramenným trojúhelníkem, co se označení stran týká. Podobnost však může být ještě větší. Jakému trojúhelníku říkáme rovnoramenný? Takovému, který má dvě strany stejně dlouhé, který má shodná ramena. A tento případ může nastat i u lichoběžníku. Pak mu říkáme rovnoramenný lichoběžník. b = d

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Lichoběžník a jeho druhy Rovnoramenný lichoběžník má nejen shodná ramena, ale i dvě dvojice úhlů při obou základnách. V takovém případě mu také říkáme pravoúhlý lichoběžník. A když už jsme u úhlů, vzpomeňme si ještě na další typ trojúhelníku – trojúhelník s jedním pravým vnitřním úhlem, kterému říkáme pravoúhlý. I lichoběžník může mít některý z vnitřních úhlů pravý. A jak je vidět na obrázku, pravoúhlý lichoběžník má pravé úhly dokonce dva.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Nás nyní zajímá délka hraniční křivky vymezující lichoběžník. Obvod lichoběžníku Obvod znamená vymezení nějaké plochy, jde o hraniční křivku rovinného útvaru nebo její délku. a+b+c+do=

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte obvod lichoběžníku ABCD (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 7,2 cm b = 4,5 cm c = 1,8 cm d = 5,5 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte obvod lichoběžníku ABCD (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 7,2 cm b = 4,5 cm c = 1,8 cm d = 5,5 cm o = a + b + c + d o = 7,2 + 4,5 + 1,8 + 5,5 o = 19 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte obvod lichoběžníku ABCD (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 5,1 cm b = 15 mm c = 0,39 dm d = 58 mm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte obvod lichoběžníku ABCD (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 5,1 cm b = 15 mm c = 0,39 dm d = 58 mm o = a + b + c + d o = o = 163 mm POZOR NA JEDNOTKY! Dosazujeme až po převodu na stejné jednotky. Tak např. na milimetry, abychom se zbavili desetinných čárek.

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte obvod lichoběžníku ABCD (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 7,2 cm c = 2,2 cm d = 4,8 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte obvod lichoběžníku ABCD (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 7,2 cm c = 2,2 cm d = 4,8 cm o = a + b + c + d o = 7,2 + 4,8 + 2,2 + 4,8 o = 19 cm Že vám chybí délka jedné strany? Za to víte, že lichoběžník má dva stejné vnitřní úhly. Co to znamená? A nepomůže nám to? Plyne z toho, že se jedná o rovnoramenný lichoběžník a kromě dvou dvojic stejných úhlů má i jednu dvojici stejných stran, ramen. c = 4,8 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte neznámou stranu lichoběžníku ABCD, znáte-li jeho obvod (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 7,2 cm c = 1,7 cm d a = 6,9 cm o = 19,5 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte neznámou stranu lichoběžníku ABCD, znáte-li jeho obvod (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a = 7,2 cm c = 1,7 cm d a = 6,9 cm o = 19,5 cm o = a + b + c + d 19,5 = 7,2 + 6,9 + 1,7 + d d = 19,5 – 7,2 – 6,9 – 1,7 d = 3,7 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady k procvičení Vypočítejte neznámé strany lichoběžníku ABCD, znáte-li jeho obvod (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a c d = 5,8 cm b = 1 cm o = 20,2 cm

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Že vám chybí délka jedné strany? Za to víte, že lichoběžník má dva stejné vnitřní úhly. Co to znamená? A nepomůže nám to? Plyne z toho, že se jedná o rovnoramenný lichoběžník a kromě dvou dvojic stejných úhlů má i jednu dvojici stejných stran, ramen. Příklady k procvičení Vypočítejte neznámé strany lichoběžníku ABCD, znáte-li jeho obvod (viz obrázek). Pokud si nebudete vědět rady, klikněte a já vás povedu. a c d = 5,8 cm b = 1 cm o = 20,2 cm o = a + b + c + d 20,2 = 2a ,8 2a = 20,2 – 1 – 5,8 a = 13,4 : 2 = 6,7 cm = c a = c o = a + b + a + d o = 2a + b + d 2a = 13,4

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ne vždy budeme mít zadán lichoběžník ABCD! Obvod lichoběžníku A na závěr ještě zobecnění! a+b+c+do= o=p+q+r+s o=k+l+m+n Obecně tedy platí, že obvod lichoběžníku vypočítáme jako součet všech čtyř jeho stran.