Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Slides:



Advertisements
Podobné prezentace
Pokud balónek opřeme o jeden hřebík - praskne.
Advertisements

Vlastnosti kapalin a plynů
Zpracovala Iva Potáčková
Název materiálu: OPAKOVÁNÍ 2. POLOLETÍ - OTÁZKY
vlastnosti kapalin a plynů I. Hydrostatika
MECHANIKA KAPALIN A PLYNŮ
Mechanika kapalin a plynů
Proudění tekutin Ustálené proudění (stacionární) – všechny částice se pohybují stejnou rychlostí Proudnice – trajektorie jednotlivých částic proudící tekutiny.
Mechanika tekutin Kapalin Plynů Tekutost
Mechanika tekutin tekutina = látka, která teče
Digitální učební materiál
Mechanické vlastnosti plynů.
8. Hydrostatika.
7. MECHANIKA TEKUTIN.
Gymnázium, Havířov-Město, Komenského 2, p.o.
Název úlohy: 5.16 Atmosférický tlak.
Mechanická práce a energie
Digitální učební materiál
Mechanické vlastnosti kapalin a plynů Molekuly plynu jsou v neustálém neuspořádaném pohybu Mezi jednotlivými molekulami plynu nepůsobí žádné síly (kromě.
Plyny Plyn neboli plynná látka je jedno ze skupenství látek, při kterém jsou částice relativně daleko od sebe, pohybují se v celém objemu a nepůsobí na.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _658 Výukový materiál zpracován v rámci projektu EU peníze školám.
Mechanika tuhého tělesa
Struktura a vlastnosti pevných látek
Vztlaková síla v tekutinách
Plyny.
Elektrické pole Elektrický náboj, Elektrické pole
Mechanické vlastnosti plynů
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Soňa Brunnová Název materiálu: VY_32_INOVACE_18_HYDROSTATICKY.
Plyny.
Mechanika kapalin a plynů
9. Hydrodynamika.
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Soňa Brunnová Název materiálu: VY_32_INOVACE_20_PROUDENI.
Mechanika kapalin a plynů
Tlak.
Autor: RNDr. Kateřina Kopečná Gymnázium K. V. Raise, Hlinsko, Adámkova 55.
VLASTNOSTI KAPALIN A PLYNŮ
Mechanika II. Tlak vyvolaný tíhovou silou VY_32_INOVACE_11-18.
Autor:Ing. Bronislav Sedláček Předmět/vzdělávací oblast: Fyzikální vzdělávání Tematická oblast:Mechanika Téma:Tlak a tlaková síla v plynech Ročník:1. Datum.
Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona III/2VY_32_inovace _660 Výukový materiál zpracován v rámci projektu EU peníze školám.
Digitální výukový materiál zpracovaný v rámci projektu „EU peníze školám“ Projekt:CZ.1.07/1.5.00/ „SŠHL Frýdlant.moderní školy“ Škola:Střední škola.
VY_32_INOVACE_11-20 Mechanika II. Kapaliny – test.
Shrnutí učiva V Autor: Mgr. Barbora Pivodová Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.1.38/
Mechanické vlastnosti kapalin
Hydrodynamika Mgr. Kamil Kučera.
Mechanika tekutin Tekutiny Tekutost – vnitřní tření
PLYNY.
Mechanické vlastnosti plynů
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorIng. Ivana Brhelová Název šablonyIII/2.
Reálná kapalina, obtékání těles
 malé síly mezi molekulami + velké vzdálenosti,  neustálý a neuspořádaný pohyb částic,  tekuté,  rozpínavé,  stlačitelné,  nemají stálý tvar, nemají.
Mechanické vlastnosti plynů. Struktura prezentace otázky na úvod teorie příklad využití v praxi otázky k zopakování shrnutí.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Tlak v tekutinách Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Radim Frič. Slezské gymnázium, Opava, příspěvková organizace. Vzdělávací.
Tlak v kapalinách. Struktura prezentace otázky na úvod teorie příklad využití v praxi otázky k zopakování shrnutí.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Proudění tekutin Částice tekutiny se pohybuje po trajektorii, která se nazývá proudnice.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková Název prezentace (DUMu): 17. Vlastnosti tekutin, tlak, tlaková síla Název sady: Fyzika pro 1.
Atmosférický tlak Číslo projektu: CZ.1.07./1.5.00/ Číslo projektu: CZ.1.07./1.5.00/ Název projektu: Zlepšení podmínek pro vzdělávání na SUŠ,
Fyzika pro lékařské a přírodovědné obory Ing. Petr VáchaZS – Mechanika plynů a kapalin.
Projekt MŠMTEU peníze středním školám Název projektu školyICT do života školy Registrační číslo projektuCZ.1.07/1.5.00/ ŠablonaIII/2 Sada 11 Anotace.
Název SŠ: SŠ-COPT Uherský Brod Autor: Mgr. Anna Červinková Název prezentace (DUMu): 20. Hydrodynamika Název sady: Fyzika pro 1. ročník středních škol –
Archimédův zákon rovnováha hydrostatická vztlaková síla: tíha kapaliny
Přípravný kurz Jan Zeman
Název materiálu: VY_52_INOVACE_F7.Vl.08_Tlak_v_kapalinách Datum:
7.ROČNÍK Tlak v kapalinách VY_32_INOVACE_
Základní škola a mateřská škola Bohdalov CZ.1.07/1.4.00/ III/2
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor: Mgr. Lubomíra Moravcová Název materiálu:
Hydrostatika Tlak ideální kapalina je nestlačitelná r = konst
Mechanika tekutin Tekutiny – kapaliny a plyny, nemají stálý tvar, tekutost různá – příčinou viskozita (vnitřní tření) Kapaliny – málo stlačitelné – stálý.
Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Transkript prezentace:

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí

Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela nestlačitelná Ideální plyn - dokonale tekutý - dokonale stlačitelný

Tlak v kapalinách vyvolaný vnější silou Blaise Pascal (1623 – 1662) Francouzský matematik, fyzik a filozof. v roce 1642 sestrojil první mechanický kalkulátor zabýval se šířením tlaku v kapalinách základní jednotka tlaku - Pascal

Tlak v kapalinách vyvolaný vnější silou Pascalův zákon: Tlak vyvolaný vnější tlakovou silou, která působí na kapalné těleso v uzavřené nádobě, je ve všech místech kapaliny stejný. F = velikost tlakové síly působící kolmo na rovinnou plochu kapaliny S = obsah této plochy

Tlak v kapalinách vyvolaný vnější silou Jednotkou tlaku je pascal Pa 1 Pa = 1 N.m-2 1 Pa je tlak, který vyvolá síla 1 N rovnoměrně rozložená na ploše o obsahu 1m2 a působící kolmo na tuto plochu. V praxi používané jednotky: kPa, MPa, hPa Tlak měříme manometry.

Tlak v kapalinách vyvolaný vnější silou Pascalův zákon platí i pro plyny: pneumatika jízdního kola hydraulická a pneumatická zařízení

Příklad: Písty hydraulického lisu mají obsah průřezů 5 cm2 a 400 cm2. Na užší píst působíme silou 500 N. Jaký tlak tato síla v kapalině vyvolá? Jak velkou tlakovou silou působí kapalina na širší píst? Řešení: 1 MPa, 40 kN

Tlak v kapalinách vyvolaný tíhovou silou Na všechny částice kapalného tělesa v tíhovém poli Země působí tíhová síla. Jejím výsledkem je hydrostatická tlaková síla Fh. Fh působí kapalina na dno a na stěny nádoby, na pevná tělesa ponořená do kapaliny.

Tlak v kapalinách vyvolaný tíhovou silou Hydrostatické paradoxon: Fh na dno nádob je konstantní (nezávisí na tvaru nádoby)

Tlak v kapalinách vyvolaný tíhovou silou Hydrostatický tlak ph = tlak v kapalině vyvolaný hydrostatickou tlakovou silou. V hloubce h pod volným povrchem platí: Místa o stejném ph se nazývají hladiny. Na volném povrchu kapaliny = volná hladina (ph = 0 Pa)

Tlak v kapalinách vyvolaný tíhovou silou Spojené nádoby naplněné kapalinami o různých hustotách ρ1 a ρ2, které se navzájem nemísí: Kapaliny jsou v rovnováze, jestliže platí: p1 = p2 Užití: k určení hustoty neznámé kapaliny.

Tlak vzduchu vyvolaný tíhovou silou Země je obklopena vrstvou vzduchu do výše několika tisíc kilometrů = atmosféra. Působením tíhové síly Země jsou všechny částice atmosféry přitahovány k povrchu Země = atmosférická tlaková síla Fa. tlak vyvolaný Fa = atmosférický tlak pa (zmenšuje se s nadmořskou výškou) 100 m 1,3 kPa

Tlak vzduchu vyvolaný tíhovou silou Základem pro měření pa se stal Torricelliho pokus: hodnota atmosférického tlaku = hodnotě hydrostatického tlaku rtuťového sloupce v Torricelliho trubici.

Tlak vzduchu vyvolaný tíhovou silou K měření pa se používají tlakoměry (barometry) rtuťový tlakoměr kovový tlakoměr (aneroid) barograf Normální atmosférický tlak: Pn = 1013,25 hPa Jiné jednotky tlaku: milibar (mb) = torr = 1 hPa

Vztlaková síla v kapalinách a plynech Archimedův zákon: těleso ponořené do kapaliny je nadlehčováno vztlakovou silou, jejíž velikost = tíze kapaliny stejného objemu, jako objem ponořeného těleso.

Vztlaková síla v kapalinách a plynech V = objem tělesa ρt = hustota tělesa ρ = hustota kapaliny

Vztlaková síla v kapalinách a plynech těleso klesá ke dnu (kovový předmět ve vodě) ρt > ρ FG > Fvz F těleso se v kapalině volně vznáší (ryby) ρt = ρ FG = Fvz F = 0

Vztlaková síla v kapalinách a plynech těleso stoupá k volné hladině (korek, led) částečně se vynoří těleso plove ρt < ρ FG < Fvz F Nadlehčována jsou i všechna tělesa ve vzduchu. Hustota vzduchu = 1,3 kg.m-3 malá Fvz

Příklad: Urči velikost vztlakové síly, která působí na krychli o hraně 10 cm ponořenou a) ve vodě, b) v oleji o hustotě 900 kg.m-3, c) v glycerinu o hustotě 1200 kg.m-3. Řešení: a) 10 N, b) 9 N, c) 12 N

Proudění kapalin a plynů proudění = pohyb tekutin proudnice = trajektorie jednotlivých částic proudící kapaliny nebo plynu rychlost částic má směr tečny k proudnici Laminární proudění - proudnice souběžné - při malých rychlostech

Proudění kapalin a plynů Turbulentní proudění proudnice zvlněné (víry = turbulence) při větších rychlostech

Proudění kapalin a plynů Proudění laminární Nejjednodušším případem je ustálené proudění ideální kapaliny: stálá rychlost a stálý tlak každým průřezem potrubí protéká za stejnou dobu stejný objem kapaliny objemový průtok qV = objem kapaliny, který proteče daným průřezem trubice za jednotku času

Proudění kapalin a plynů jednotka: m3.s-1 ideální kapalina – zcela nestlačitelná nikde se nehromadí objemový průtok je v každém průřezu trubice stejný

Proudění kapalin a plynů Energie: Součet kinetické a tlakové potenciální energie kapaliny o jednotkové objemu je ve všech místech trubice stejný. Bernoulliova rovnice V užším průřezu má kapalina větší rychlost, ale menší tlak než v širším průřezu.

Příklad: Vodorovnou trubicí s průřezem o obsahu 40 cm2 proudí voda rychlostí 2 m.s-1 při tlaku 200 kPa. Urči rychlost a tlak v průřezu o obsahu 8 cm2. Řešení: 10 m.s-1 , 152 kPa

Proudění kapalin a plynů Podtlak: Vzniká při zúžení trubice, kdy tlak kapaliny je menší než tlak atmosférický. rozprašovače stříkací pistole karburátor u spalovacích motorů aerodynamické paradoxon

Proudění kapalin a plynů Rychlost kapaliny vytékající otvorem v nádobě:

Proudění kapalin a plynů Obtékání těles reálnou tekutinou u reálných tekutin vznikají v důsledku vnitřního tření odporové síly směřující proti pohybu tělesa vzhledem k tekutině u kapalin hydrodynamická odporová síla u plynů aerodynamická odporová síla Velikost odporové síly závisí na: rozměrech a tvaru tělesa hustotě tekutiny vzájemné rychlosti

Proudění kapalin a plynů Při malých rychlostech - proudění laminární Při větších rychlostech - proudění turbulentní

Proudění kapalin a plynů Pro velikost aerodynamické odporové síly platí: ρ = hustota vzduchu S = obsah průřezu tělesa kolmého ke směru pohybu v = rychlost tělesa C = součinitel odporu

Proudění kapalin a plynů Aerodynamický tvar - nosné plochy křídel a trupů letadel Fx = aerodynamická odporová síla Fy = aerodynamická vztlaková síla F = Fx + Fy

Proudění kapalin a plynů Využití energie proudící tekutiny: vodní turbíny: Francisova turbína Peltonova turbína Kaplanova turbína větrné elektrárny Kaplanova turbína Peltonova turbína Francisovaova turbína

Použitá literatura a www stránky Fyzika pro gymnázia - Mechanika RNDr. Milan Bednařík, CSc doc. RNDr. Miroslava Široká, CSc Fyzika v příkladech a testových otázkách Roman Kubínek, Hana Kolářová Fyzika pro střední skoly doc. RNDr. Oldřich Lepil, CSc Fyzweb.cz