IV. Řešení úloh v testech Scio z matematiky

Slides:



Advertisements
Podobné prezentace
IV. Řešení úloh v testech Scio z obecných studijních předpokladů
Advertisements

VI. Řešení úloh v testech Scio z českého jazyka
Přijímací zkoušky na SŠ MATEMATIKA Připravil PhDr. Ivo Horáček, PhD.
IX. Řešení úloh v testech Scio z obecných studijních předpokladů
VI. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z českého jazyka zadané ve školním roce 2011/2012 pro 6. ročník (18. – 24. úloha) VIII. označení digitálního učebního materiálu:
I. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2012/2013 pro 6. ročník (19. – 26. úloha) III. označení digitálního.
VI. Řešení úloh v testech Scio z obecných studijních předpokladů
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 9. ročník (27. – 39. úloha) VIII. označení digitálního.
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 6. ročník (16. – 25. úloha) VIII. označení digitálního.
VII. Řešení úloh v testech Scio z matematiky
VI. Řešení úloh v testech Scio z obecných studijních předpokladů
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Kdo chce být milionářem ?
Násobení a dělení čísel 10, 100 a jejich násobků
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
VI. Řešení úloh v testech Scio z matematiky
Části kruhu Matematika 8 – I.díl
Zlomky Vzorce Procenta Úměrnost
Povrch hranolu S = 2.Sp + Spl Spl = op.v
I. Řešení úloh v testech Scio z matematiky
výpočet obvodu a obsahu
X. Řešení úloh v testech Scio z obecných studijních předpokladů
X. Řešení úloh v testech Scio z matematiky
V. Řešení úloh v testech Scio z matematiky
Výukový materiál zpracován v rámci projektu EU peníze školám
Elektronická učebnice - I
II. Řešení úloh v testech Scio z českého jazyka
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 6. ročník (26. – 34. úloha) IX. označení digitálního.
V. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2012/2013 pro 9. ročník (36. – 44. úloha) IV. označení digitálního.
Řešení úloh v testech Scio z českého jazyka zadaných ve školním roce 2011/2012 pro 9. ročník (45. – 55. úloha) X. označení digitálního učebního materiálu:
II. Řešení úloh v testech Scio z matematiky
MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/ Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám.
Matematika a její aplikace
Speciální vzdělávací potřeby - žádné - Klíčová slova
III. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 6. ročník (19. – 24. úloha) IX. označení digitálního učebního materiálu:
I. Řešení úloh v testech Scio z obecných studijních předpokladů
V. Řešení úloh v testech Scio z českého jazyka
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2011/2012 pro 6. ročník (35. – 45. úloha) X. označení digitálního.
Matematika a její aplikace
Řešení úloh v testech Scio z českého jazyka zadané ve školním roce 2011/2012 pro 6. ročník (34. – 40. úloha) X. označení digitálního učebního materiálu:
IX. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školní roce 2012/2013 pro 6. ročník ( úloha) I. označení digitálního učebního.
Objem a povrch ve slovních úlohách
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Vzdělávací obor: Matematika
Jakékoliv další používání podléhá autorskému zákonu.
Řešení úloh v testech Scio z obecných studijních předpokladů zadaných ve školním roce 2012/2013 pro 9. ročník (23. – 35. úloha) III. označení digitálního.
I. Řešení úloh v testech Scio z českého jazyka
PŘIROZENÁ ČÍSLA. Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona:III/2č. materiálu:
Řešení úloh v testech Scio z českého jazyka zadané ve školním roce 2012/2013 pro 6. ročník (34. – 40. úloha) V. označení digitálního učebního materiálu:
Projekt Moderní škola, registrační číslo projektu CZ.1.07/1.4.00/ Příjemce: Základní škola Velké Přílepy, okr. Praha-západ, Pražská 38, Velké.
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 6. ročník (7. – 12. úloha) VII. označení digitálního učebního materiálu:
Obvod (trojúhelník, obdélník, čtverec)
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Název školy: ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor: Vladislav Michl Název: VY_32_INOVACE_568_OBVOD_TROJÚHELNÍKU_ČT VERCE_OBDÉLNÍKU Téma:
VI. Řešení úloh v testech Scio z českého jazyka
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 9. ročník (25. – 30. úloha) X. označení digitálního učebního materiálu:
II. Řešení úloh v testech Scio z matematiky
Řešení úloh v testech Scio z matematiky zadaných ve školní roce 2012/2013 pro 9. ročník (19. – 24. úloha) IV. označení digitálního učebního materiálu:
Řešení úloh v testech Scio z českého jazyka zadaných ve školním roce 2012/2013 pro 9. ročník (12. – 18. úloha) II. označení digitálního učebního materiálu:
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník (13. – 18. úloha) III. označení digitálního učebního materiálu:
Elektronické učební materiály - I. stupeň Matematika 4 Autor: Mgr. Helena Záděrová 1. Obvod rovinných obrazců Pojmenuj geometrické tvary a urči kolik mají.
Tělesa –S krychle Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Anotace: Prezentace slouží k pochopení geometrického pojmu
Číslo projektu: CZ.1.07/1.4.00/ Název DUM:
Transkript prezentace:

IV. Řešení úloh v testech Scio z matematiky Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/21.1977 Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 6. ročník (19. – 24. úloha) IV. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.024

Metodické pokyny Autor: Mgr. Roman Kotlář Vytvořeno: srpen 2012 Určeno pro 6. ročník Matematika 2. stupeň Téma: řešení úloh testů Scio Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio Forma: žáci pracují samostatně Pomůcky: počítač, dataprojektor Zdroje: zadání testů Scio, obrázky – zdroj uveden přímo v daném slidu Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

19. – 21. úloha testu Scio z matematiky pro 6. ročník (podzim 2012) Jak velká je plocha obdélníku, který vznikne spojením dvou čtverců o obvodu 12 cm, jak je znázorněno na uvedeném obrázku? 20. Model geometrického tělesa na uvedeném obrázku je sestaven z kousků špejlí dlouhých 10 cm, spojených plastelínovými kuličkami. Jaká je celková délka všech špejlí použitých na stavbu tohoto modelu? 21. Které z následujících tvrzení je na základě uvedeného grafu spotřeby vody pravdivé? Druhá nejmenší spotřeba vody byla ve čtvrtek. Za víkend byla spotřeba vody větší než ve čtvrtek a v pátek. Za tyto čtyři dny se spotřebovalo více než 320 litrů vody. V pátek se spotřebovalo více než 70 litrů vody.

19. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Jak velká je plocha obdélníku, který vznikne spojením dvou čtverců o obvodu 12 cm, jak je znázorněno na uvedeném obrázku? Nabízená řešení jsou : A) 9 cm2; B) 12 cm2; C) 18 cm2; D) 24 cm2. Řešení: Obvod čtverce vypočítáme podle vzorce O = 4a. Pokud je obvod roven 12, dostaneme rovnost 12 = 4 . a. Z toho a = 12 : 4 = 3 cm. Obsah čtverce vypočítáme podle vzorce S = a . a. Jestliže strana čtverce má délku 3 cm, pak S = 3 . 3 = 9 cm2. Tyto čtverce jsou dva, a proto 2 . 9 = 18 cm2. Správnou odpovědí je varianta C).

20. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Model geometrického tělesa na uvedeném obrázku je sestaven z kousků špejlí dlouhých 10 cm, spojených plastelínovými kuličkami. Jaká je celková délka všech špejlí použitých na stavbu tohoto modelu? Nabízená řešení jsou: A) 120 cm; B) 150 cm; C) 240 cm; D) 300 cm. 2 1 3 Řešení: Výsledné těleso se skládá ze čtyř jehlanů obsahujících stejný počet špejlí. Pro jeden z těchto jehlanů je potřeba šesti špejlí (viz označení na obrázku). Jehlanů jsou celkem čtyři, tedy 4 x 6 = 24 špejlí. Jiný možný postup je ten, že pečlivě sečteme všechny použité deseticentimetrové špejle (a také se dopočítáme k číslu 24). Pokud pokračujeme ve výpočtu, dostaneme 10 x 24 = 240 cm. Správnou odpovědí je varianta C). 4 6 5

21. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Které z následujících tvrzení je na základě uvedeného grafu spotřeby vody pravdivé? Nabízená tvrzení jsou: Druhá nejmenší spotřeba vody byla ve čtvrtek. Za víkend byla spotřeba vody větší než ve čtvrtek a v pátek. Za tyto čtyři dny se spotřebovalo více než 320 litrů vody. V pátek se spotřebovalo více než 70 litrů vody. Řešení: Tvrzení A): Pořadí dnů sestupně podle spotřeby je neděle, čtvrtek, sobota, pátek. Tedy dnem s druhou nejmenší spotřebou nebyl čtvrtek, ale byla to sobota. Tvrzení A) není pravdivé. Tvrzení B): Za víkend, tj. sobotu a neděli, byla spotřeba 70 + 90 = 170 l a ve čtvrtek a pátek 80 + 50 = 130 l, tedy za víkend byla spotřeba nižší. Tvrzení B) není pravdivé. Tvrzení C): Celkem se spotřebovalo 80 + 50 + 70 + 90 = 130 + 220 = 350 l, což je víc než 320. Tvrzení C) je pravdivé. Tvrzení D): V pátek se spotřebovalo 50 l, což je méně než 70 l. Tvrzení D) není pravdivé. Správnou odpovědí je varianta C).

22. – 24. úloha testu Scio z matematiky pro 6. ročník (podzim 2012) Čokoládové dortíky na uvedeném obrázku jsou zabalené jednotlivě v krabičkách tvaru trojúhelníku, jehož rozměry jsou poloviční ve srovnání s rozměry velké krabice, do níž jsou vloženy. Kolik čokoládových dortíků se vejde do krabice? 23. Rovnoramenný trojúhelník má obvod 40 cm a rameno dlouhé 14 cm. O kolik cm musíme zvětšit jeho základnu, aby se z něj stal rovnostranný trojúhelník? 24. Těleso na uvedeném obrázku sestavené ze stejně těžkých krychliček váží 420 g. Kolik by vážilo, kdybychom ho stejně těžkými krychličkami doplnili do celé krychle?

22. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Čokoládové dortíky na uvedeném obrázku jsou zabalené jednotlivě v krabičkách tvaru trojúhelníku, jehož rozměry jsou poloviční ve srovnání s rozměry velké krabice, do níž jsou vloženy. Kolik čokoládových dortíků se vejde do krabice? Nabízená řešení jsou: A) 4; B) 5; C) 6; D) 8. 1 3 2 4 Řešení: Viz obrázek. Do krabice se vejdou 4 čokoládové dortíky. Správnou odpovědí je varianta A). 1 3 2 4

23. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Rovnoramenný trojúhelník má obvod 40 cm a rameno dlouhé 14 cm. O kolik cm musíme zvětšit jeho základnu, aby se z něj stal rovnostranný trojúhelník? Nabízená řešení jsou: A) o 2 cm; B) o 3 cm; C) o 4 cm; D) o 5 cm. rameno rameno Rovnostranný trojúhelník Rovnoramenný trojúhelník základna Řešení: Obvod rovnoramenného trojúhelníka je složen ze dvou stejně dlouhých ramen a základny. Pokud je jedno rameno dlouhé 14 cm, mají obě ramena délku 2 x 14 = 28 cm. Délku základny vypočteme odečtením délky obou ramen od obvodu trojúhelníku, tj. 40 – 28 = 12 cm. A délka základny je pak o 14 – 12 = 2 cm kratší, proto ji je třeba o 2 cm prodloužit. Správnou odpovědí je varianta A).

24. otázka testu Scio z matematiky pro 6. ročník (podzim 2012) Těleso na uvedeném obrázku sestavené ze stejně těžkých krychliček váží 420 g. Kolik by vážilo, kdybychom ho stejně těžkými krychličkami doplnili do celé krychle? Nabízená řešení jsou: A) 480 g; B) 500 g; C) 520 g; D) 540 g. Zadní část Prostřední část 1. 2. 3. 1. 4. Přední část 5. Přední část Prostřední část Zadní část Řešení: Těleso je složeno ze 4 + 8 + 9 = 21 krychliček. Tedy 1 krychlička váží 420 : 21 = 20 g. Na doplnění do krychle chybí 5 + 1 + 0 = 6 krychliček, které váží 6 x 20 = 120 g. Celkový součet hmotností pak bude 420 + 120 = 540 g. Výpočet lze ověřit tak, že si řekneme, kolik krychliček tvoří celou krychli a je jich 3 x 3 x 3 = 27 a 27 x 20 = 540 g. Těleso váží 540 g. Správnou odpovědí je varianta D).