Tematická oblast Autor Ročník Obor Anotace.

Slides:



Advertisements
Podobné prezentace
Digitální učební materiál
Advertisements

ELEKTRICKÝ PROUD.
Test znalostí o kovech a nekovech
Výukový matriál byl zpracován v rámci projektu OPVK 1.5
Výukový matriál byl zpracován v rámci projektu OPVK 1.5
REDOXNÍ DĚJ RZ
TŘÍDĚNÍ CHEMICKÝCH PRVKŮ I. Chemie 8. ročník
KOVY - 4/5 všech prvků výskyt: ryzí (Au, Ag, Cu, Pt)
VY_52_INOVACE_02/1/21_Chemie
Název materiálu: ELEKTRICKÉ POLE – výklad učiva.
Výukový materiál zpracován v rámci projektu EU peníze školám
32. Magnetické vlastnosti látek, částice s nábojem v elektrickém a magnetickém poli DOLEŽAL JAN, 8.A.
Kovy – nekovy polokovy RZ
Anotace Prezentace určená k opakování a procvičování učiva o kovech, nekovech a polokovech Autor Ing. Lenka Kalinová JazykČeština Očekávaný výstup Rozpozná.
Pč_087_Práce s kovy_Rozdělení kovů
Tematická oblast Autor Ročník Obor Anotace.
Tato prezentace byla vytvořena
Anotace Prezentace určená k opakování a procvičování učiva o kovech
Chemie 8. ročník Kovy.
Kovy Chemie 8. třída.
5.4 Většinu prvků tvoří kovy
Elektrický proud v látkách
Kovy Mgr. Helena Roubalová
Tematická oblast Autor Ročník Obor Anotace.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Monika Chudárková ANOTACEMateriál seznamuje žáky se společnými vlastnostmi kovů a.
jméno autora Mgr. Eva Truxová název projektu
Strojírenství Strojírenská technologie Technické materiály (ST 9)
magnetické pole druh silového pole vzniká kolem: vodiče s proudem
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, , Karlovy Vary Autor: MIROSLAV MAJCHER Název materiálu: VY_32_INOVACE_16_.
Výpočet indukce magnetických polí
Kovy Z prvních 92 prvků (po uran) je 70 kovů a pouze 22 polokovů a nekovů. Nejrozšířenějším kovem v zemské kůře je hliník, následovaný železem.
Digitální učební materiál
Elektrolýza
Kovy Fe, Al, Cu, Pb, Zn, Ag, Au.
Elektrotechnologie 5.
14. STACIONÁRNÍ MAGNETICKÉ POLE
Jak si vyrobit magnet? (Učebnice strana 55 – 56)
Magnetické pole Mgr. Andrea Cahelová
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: MIROSLAV MAJCHER Název materiálu: VY_32_INOVACE_13_ZPŮSOBY.
Kateřina Novotná, 3.A.  Jev, při kterém dochází ke změně magnetických vlastností látky vlivem působení vnějšího magnetického pole.  Projevuje se u feromagnetických.
ZÁKLADNÍ ŠKOLA BENÁTKY NAD JIZEROU, PRAŽSKÁ 135 projekt v rámci operačního programu VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST Šablona číslo: V/2 Název: Využívání.
Koroze Povlaky.
SE ZVLÁŠTNÍMI VLASTNOSTMI
Uvedení autoři, není-li uvedeno jinak, jsou autory tohoto výukového materiálu a všech jeho částí. Tento projekt je spolufinancován ESF a státním rozpočtem.
Název vzdělávacího materiálu: AZ kvíz – chemické prvky Číslo vzdělávacího materiálu: ICT9/20 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Název operačního programu: OP Vzdělávání pro konkurenceschopnost
Číslo projektu CZ.1.07/1.5.00/ Název školyGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64 Název materiáluStacionární magnetické.
NÁZEV ŠKOLY: Masarykova základní škola a mateřská škola Melč, okres Opava, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.4.00/ AUTOR:Mgr. Tomáš.
ELEKTROTECHNICKÉ MATERIÁLY. Název projektu: Nové ICT rozvíjí matematické a odborné kompetence Číslo projektu: CZ.1.07/1.5.00/ Název školy: Střední.
ELEKTROTECHNICKÉ MATERIÁLY. Název projektu: Nové ICT rozvíjí matematické a odborné kompetence Číslo projektu: CZ.1.07/1.5.00/ Název školy: Střední.
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, , Karlovy Vary Autor: MIROSLAV MAJCHER Název materiálu: VY_32_INOVACE_19_.
ELEKTROTECHNOLOGIE VODIČE - ÚVOD. VŠEOBECNÁ CHARAKTERISTIKA VODIČE – ELEKTRICKY VODIVÉ MATERIÁLY pro jejichž technické využití je rozhodující jejich VELKÁ.
ELEKTROTECHNICKÉ MATERIÁLY. Název projektu: Nové ICT rozvíjí matematické a odborné kompetence Číslo projektu: CZ.1.07/1.5.00/ Název školy: Střední.
Druhy a vlastnosti ele.materiálů
LEHKÉ NEŽELEZNÉ KOVY A JEJICH SLITINY
Materiály a technologie
Výukový materiál zpracován v rámci projektu
Magnetické pole.
Fyzikální vlastnosti technických materiálů
ŘEMESLO - TRADICE A BUDOUCNOST
Autor: Mgr. M. Vejražková
Materiály a technologie
Název projektu: Učíme obrazem Šablona: III/2
Číslo projektu: CZ.1.07/1.4.00/ Název DUM: Závislost elektrického odporu na vlastnostech vodiče Číslo DUM: III/2/FY/2/2/12 Vzdělávací předmět: Fyzika.
ELEKTROTECHNICKÉ MATERIÁLY
ELEKTROTECHNICKÉ MATERIÁLY
Vlastnosti technických materiálů test
14. STACIONÁRNÍ MAGNETICKÉ POLE
Elektrický proud Elektrické napětí Vodiče a izolanty
FYZIKA 2.B 4. hodina.
Transkript prezentace:

Tematická oblast Autor Ročník Obor Anotace

Vlastnosti kovů Úvod Vlastnosti kovů Technologie

Vodivé materiály používané v elektrotechnice pevné Vlastnosti kovů Úvod Vodivé materiály používané v elektrotechnice pevné kovy (železo, měď, hliník, mosaz, bronz, zlato, stříbro) polokovy (křemík, germanium) nekovy (uhlík) kapalné roztoky (elektrolyty – galvanické články, akumulátory, pokovování) taveniny (výroba hliníku elektrolýzou taveniny bauxitu) plynné ionizace (zářivka, doutnavka, oblouk) Technologie

Vlastnosti kovových materiálů elektrické vodivost, odpor (vodiče, žárovky, vařiče) závislost odporu na teplotě (teploměry) magnetické chování v magnetickém poli (transformátory, motory, generátory) mechanické pevnost (namáhání vodičů tahem, tečení hliníku) měrná hmotnost (hliník lehký, měď těžká) chemické odolnost proti korozi (kontakty, pokovování) Technologie

Elektrické vlastnosti Vlastnosti kovů Elektrické vlastnosti Elektrický odpor Kovy obsahují volné elektrony. Normálně se elektrony ve vodiči pohybují chaoticky, neuspořádaně. Navenek se jejich pohyby vzájemně ruší, proud neteče. Elektrony se dají do pohybu, když na ně přiložíme elektrické pole. Elektrické pole vznikne přiložením napětí na vodič. Elektrony se pohybují tím rychleji, čím je elektrické pole silnější, tj. čím je napětí větší. Vodičem teče elektrický proud. Proud je tím větší, čím je větší napětí. Ohmův zákon: 𝑰= 𝑼 𝑅 I je nahoře, U je nahoře => čím větší, tím větší. Čím větší napětí, tím větší proud. Čím větší napětí, tím rychleji se elektrony pohybují. Technologie

Magnetické vlastnosti Vlastnosti kovů mT Magnetické vlastnosti T Materiály diamagnetické, paramagnetické, feromagnetické Vacuum Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Vakuum Vnější magnetické pole o intenzitě 400 A/m vybudí ve vakuu magnetickou indukci asi 0,5 mT (militesla). Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Diamagnetické materiály Vnější magnetické pole o intenzitě 400 A/m vybudí v diamagnetickém materiálu magnetickou indukci asi 0,4 mT (militesla), tj. o něco méně než ve vakuu. Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Paramagnetické materiály Vnější magnetické pole o intenzitě 400 A/m vybudí v paramagnetickém materiálu magnetickou indukci asi 0,6 mT (militesla), tj. o něco více než ve vakuu. Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Feromagnetické materiály T Vacuum Vnější magnetické pole o intenzitě 400 A/m vybudí ve feromagnetickém materiálu magnetickou indukci asi 1,5 T (tesla), tj. 1500 mT, tj. neskonale víc než ve vakuu. Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Permeabilita Permeabilita je schopnost materiálu vytvářet si v sobě pod účinkem vnějšího magnetického pole vlastní vnitřní magnetické pole. Permeabilita vyjadřuje, jak se materiál pod účinkem vnějšího magnetického pole uvnitř zmagnetuje. Permeabilita vyjadřuje, jak ochotně se elementární magnety uvnitř materiálu pod účinkem vnějšího magnetického pole řadí do jednoho směru. Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Permeabilita je poměr magnetické indukce B k intenzitě magnetického pole H: μ= 𝐵 𝐻 Čím větší magnetická indukce B se uvnitř materiálu vybudí, tím větší je permeabilita μ. Proto je B ve vzorečku nahoře. Čím menší intenzita magnetického pole H je k tomu zapotřebí, tím větší je permeabilita μ. Proto je H ve vzorečku dole. Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Relativní permeabilita Relativní permeabilita vyjadřuje, kolikrát ochotněji se materiál nechá zmagnetovat než vakuum. Relativní permeabilita vyjadřuje poměr permeability materiálu k permeabilitě vakua. permeabilita materiálu relativní permeabilita materiálu μ 𝑟 = μ μ 0 permeabilita vakua Technologie

Magnetické vlastnosti Vlastnosti kovů Magnetické vlastnosti Permeabilita a relativní permeabilita Medium Permeability μ [H/m] Relative Permeability μ/μ0 Metglas 1.25 1,000,000 Permalloy 1.0×10−2 8,000 Electrical steel 5.0×10−3 4,000 Ferrite >8.0×10−4 640 Carbon Steel 8.75×10−4 100 Nickel 1.25×10−4 100 – 600 Stainless Steel 1.003 - 7 Aluminum 1.2566650×10−6 1.000022 Air 1.2566375×10−6 1.00000037 Vacuum π4×10−7 (μ0) 1 Copper 1.2566290×10−6 0.999994 Water 1.2566270×10−6 0.999992 Superconductors Technologie